

Programmers Reference
Volume 2

Window Objects

Version 1

Programmer's
Reference
Volume Two
Window Objects

OpenZinc Application Framework
Version 1.0

Copyright © 1990-1994 Zinc Software Incorporated
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled "GNU
Free Documentation License".

TABLE OF CONTENTS

INTRODUCTION 1
UI_SAMPLE_CLAS S::SampleFunction
CLASSES AND STRUCTURES
INCLUDE FILE HIERARCHY
CLASS HIERARCHY

CHAPTER 1 - UIW_BIGNUM 15
General Members
UIW_BIGNUM::UIW_BIGNUM
UIW_BIGNUM::~UIW_BIGNUM
UIW_BIGNUM::ClassName
UIW_BIGNUM::DataGet
UIW_BIGNUM::DataSet
UIW_BIGNUM::Event
UIW_BIGNUM::Information
UIW_BIGNUM::SetLanguage
UIW_BIGNUM::Validate
Storage Members
UIW_BIGNUM::UIW_BIGNUM
UIW_BIGNUM::Load
UIW_BIGNUM::New
UIW_BIGNUM::NewFunction
UIW_BIGNUM::Store

CHAPTER 2 - UIW_BORDER 39
General Members
UIW_BORDER::UIW_BORDER
UIW_BORDER::ClassName
UIW_BORDER::DataGet
UIW_BORDER::DataSet
UIW_BORDER::DrawItem
UIW_BORDER::Event
UIW_BORDER::Information
Storage Members
UIW_BORDER::UIW_BORDER
UIW_B ORDER::Load
UIW_BORDER::New
UIW_BORDER::NewFunction

UIW_BORDER::Store

CHAPTER 3 - UIW_BUTTON 55
General Members
UIW_BUTTON::UIW_BUTTON
UIW_BUTTON::~UIW_BUTTON
UIW_BUTTON::ClassName
UIW_BUTTON::DataGet
UIW_BUTTON::DataSet
UIW_BUTTON::Drawltem
UIW_BUTTON::Event
UIW_BUTTON::Information
UIW_BUTTON::Message
UIW_BUTTON::SetDecorations
Storage Members
UIW_BUTTON::UIW_BUTTON
UIW_BUTTON::Load
UIW_BUTTON::New
UIW_BUTTON::NewFunction
UIW_BUTTON::Store

CHAPTER 4 - UIW_COMBO_BOX 85
General Members
UIW_COMBO_BOX::UIW_COMBO_BOX
UIW_COMBO_BOX::~UIW_COMBO_BOX
UIW_COMBO_BOX::Add
UIW_COMBO_BOX::operator +
UIW_COMBO_BOX::ClassName
UIW_COMBO_BOX::Count
UIW_COMBO_BOX::Current
UIW_COMBO_BOX::Destroy
UIW_COMBO_BOX::Event
UIW_COMBO_BOX::First
UIW_COMBO_BOX::Get
UIW_COMBO_BOX::Index
UIW_COMBO_BOX::Information
UIW_COMBO_BOX::Last
UIW_COMBO_BOX::Sort
UIW_COMBO_BOX::Subtract
UIW_COMBO_BOX::operator -
Storage Members
UIW_COMBO_BOX::UIW_COMBO_BOX
UIW_COMBO_BOX::Load

UIW_COMBO_BOX::New
UIW_COMBO_BOX::NewFunction
UIW_COMBO_BOX::Store

CHAPTER 5 - UIW_DATE 113
General Members
UIW_DATE::UIW_DATE
UIW_DATE::~UIW_DATE
UIW_DATE::ClassName
UIW_DATE::DataGet
UIW_DATE::DataSet
UIW_DATE::Event
UIW_DATE::Information
UIW_DATE::SetLanguage
UIW_DATE::Validate
Storage Members
UIW_DATE::UIW_DATE
UIW_DATE::Load
UIW_DATE::New
UIW_DATE::Store

CHAPTER 6 - UIW_FORMATTED_STRING 137
General Members
UIW_FORMATTED_STRING::UIW_FORMATTED_STRING
UIW_FORMATTED_STRING::~UIW_FORMATTED_STRING
UIW_FORMATTED_STRING::ClassName
UIW_FORMATTED_STRING::DataGet
UIW_FORMATTED_STRING::DataSet
UIW_FORMATTED_STRING::Event
UIW_FORMATTED_STRING::Export
UIW_FORMATTED_STRING::Import
UIW_FORMATTED_STRING::Information
Storage Members
UIW_FORMATTED_STRING::UIW_FORMATTED_STRING
UIW_FORMATTED_STRING::Load
UIW_FORMATTED_STRING::New
UIW_FORMATTED_STRING::NewFunction
UIW_FORMATTED_STRING::Store

CHAPTER 7 - UIW_GROUP 161
General Members
UIW_GROUP::UIW_GROUP
UIW_GROUP::~UIW_GROUP

v

UIW_GROUP::ClassName
UIW_GROUP::DataGet
UIW_GROUP::DataSet
UIW_GROUP::Event
UIW_GROUP::Information
UIW_GROUP::RegionMax
Storage Members
UIW_GROUP::UIW_GROUP
UIW_GROUP::Load
UIW_GROUP::New
UIW_GROUP::NewFunction
UIW_GROUP::Store

CHAPTER 8 - UIW_HZ_LIST 181
General Members
UIW_HZ_LIST::UIW_HZ_LIST
UIW_HZ_LIST::~UIW_HZ_LIST
UIW_HZ_LIST::Add
UIW_HZ_LIST::ClassName
UIW_HZ_LIST::Destroy
UIW_HZ_LIST::Event
UIW_HZ_LIST::Information
UIW_HZ_LIST::ScrollEvent
UIW_HZ_LIST::Sort
UIW_HZ_LIST::Subtract
UIW_HZ_LIST::operator -
Storage Members
UIW_HZ_LIST::UIW_HZ_LIST
UIW_HZ_LIST::Load
UIW_HZ_LIST::New
UIW_HZ_LIST::NewFunction
UIW_HZ_LIST::Store

CHAPTER 9 - UIW_ICON 207
General Members
UIW_ICON::UIW_ICON
UIW_ICON::UIW_ICON
UIW_ICON::ClassName
UIW_ICON::DataGet
UIW_ICON: .DataSet
UIW_ICON::Drawltem
UIW_ICON::Event

UIW_ICON::Information

Storage Members
UIW_ICON::UIW_ICON
UIW_ICON::Load
UIW_ICON::New

UIW_ICON::NewFunction
UIW_ICON::Store

CHAPTER 10 - UIW_INTEGER 231
General Members
UIW_INTEGER::UIW_INTEGER
UIW_INTEGER::~UIW_INTEGER
UIW_INTEGER::ClassName
UIW_INTEGER::DataGet
UIW_INTEGER::DataSet
UIW_INTEGER::Event

UIW_INTEGER::Information
UIW_INTEGER::SetLanguage
UIW_INTEGER::Validate

Storage Members
UIW_INTEGER::UIW_INTEGER
UIW_INTEGER::Load
UIW_INTEGER::New
UIW_INTEGER::NewFunction
UIW_INTEGER::Store

CHAPTER 11 - UIW_MAXIMIZE_BUTTON 251
General Members
UIW_MAXIMIZE_BUTTON::UIW_MAXIMIZE_BUTTON
UIW_MAXIMIZE_BUTTON::~UIW _MAXIMIZE_BUTTON
UIW_MAXIMIZE_BUTTON::ClassName
UIW_MAXIMIZE_BUTTON::Event
UIW_MAXIMIZE_BUTTON::Information
UIW_MAXIMIZE_BUTTON::SetDecorations
Storage Members
UIW_MAXIMIZE_BUTTON::UIW_MAXIMIZE_BUTTON
UIW_MAXIMIZE_BUTTON::Load
UIW_MAXIMIZE_BUTTON::New
UIW_MAXIMIZE_BUTTON::NewFunction
UIW_MAXIMIZE_BUTTON::Store

CHAPTER 12 - UIW_MINIMIZE_BUTTON 265
General Members
UIW_MINIMIZE_BUTTON::UIW_MINIMIZE_BUTTON

vii

UIW_MINIMIZE_BUTTON::~UIW_MINIMIZE_BUTTON
UIW_MINIMIZE_BUTTON::ClassName
UIW_MINIMIZE_BUTTON::Event
UIW_MINIMIZE_BUTTON::Information
UIW_MINIMIZE_BUTTON::SetDecorations
Storage Members
UIW_MINIMIZE_BUTTON::UIW_MINIMIZE_BUTTON
UIW_MINIMIZE_BUTTON::Load
UIW_MINIMIZE_BUTTON::New
UIW_MINIMIZE_BUTTON::NewFunction
UIW_MINIMIZE_BUTTON::Store

CHAPTER 13 - UIW_NOTEBOOK 279
General Members
UIW_NOTEBOOK::UIW_NOTEBOOK
UIW_NOTEBOOK::~UIW_NOTEBOOK
UIW_NOTEBOOK::Add
UIW_NOTEBOOK::operator +
UIW_NOTEBOOK::ClassName
UIW_NOTEBOOK::DrawItem
UIW_NOTEBOOK::Event
UIW_NOTEBOOK::Information
Storage Members
UIW_NOTEBOOK::UIW_NOTEBOOK
UIW_NOTEBOOK::Load
UIW_NOTEBOOK::New
UIW_NOTEBOOK::NewFunction
UIW_NOTEBOOK::Store

CHAPTER 14 - UIW_POP_UP_ITEM 295
General Members
UIW_POP_UP_ITEM::UIW_POP_UP_ITEM
UIW_POP_UP_ITEM::~UIW_POP_UP_ITEM
UIW_POP_UP_ITEM::Add
UIW_POP_UP_ITEM::operator +
UIW_POP_UP_ITEM::ClassName
UIW_POP_UP_ITEM::DrawItem
UIW_POP_UP_ITEM::Event
UIW_POP_UP_ITEM::Information
UIW_POP_UP_ITEM::SetDecorations
UIW_POP_UP_ITEM: Subtract
UIW_POP_UP_ITEM::operator -
Storage Members

viii

UIW_POP_UP_ITEM::UIW_POP_UP_ITEM
UIW_POP_UP_ITEM::Load
UIW_POP_UP_ITEM::New
UIW_POP_UP_ITEM::NewFunction
UIW_POP_UP_ITEM::Store

CHAPTER 15 - UIW_POP_UP_MENU 319
General Members
UIW_POP_UP_MENU::UIW_POP_UP_MENU
UIW_POP_UP_MENU::~UIW_POP_UP_MENU
UIW_POP_UP_MENU::Add
UIW_POP_UP_MENU::ClassName
UIW_POP_UP_MENU::Event
UIW_POP_UP_MENU::Information
UIW_POP_UP_MENU::Subtract
UIW_POP_UP_MENU::operator -
Storage Members
UIW_POP_UP_MENU::UIW_POP_UP_MENU
UIW_POP_UP_MENU::Load
UIW_POP_UP_MENU::New
UIW_POP_UP_MENU::NewFunction
UIW_POP_UP_MENU::Store

CHAPTER 16 - UIW_PROMPT 337
General Members
UIW_PROMPT::UIW_PROMPT
UIW_PROMPT: :UIW_PROMPT
UIW_PROMPT::ClassName
UIW_PROMPT::DataGet
UIW_PROMPT::DataSet
UIW_PROMPT::Drawltem
UIW_PROMPT::Event
UIW_PROMPT::Information
Storage Members
UIW_PROMPT::UIW_PROMPT
UIW_PROMPT::Load
UIW_PROMPT::New
UIW_PROMPT::NewFunction
UIW_PROMPT::Store

CHAPTER 17 - UIW_PULL_DOWN_ITEM 357
General Members
UIW_PULL_DOWN_ITEM::UIW_PULL_DOWN_ITEM

ix

UIW_PULL_DOWN_ITEM::~UIW_PULL_DOWN_ITEM
UIW_PULL_DOWN_ITEM::Add
UIW_PULL_DOWN_ITEM::operator +
UIW_PULL_DOWN_ITEM::ClassName
UIW_PULL_DOWN_ITEM::Drawltem
UIW_PULL_DOWN_ITEM::Event
UIW_PULL_DOWN_ITEM::Information
UIW_PULL_DOWN_ITEM::Subtract
UIW_PULL_DOWN_ITEM::operator -
Storage Members
UIW_PULL_DOWN_ITEM::UIW_PULL_DOWN_ITEM
UIW_PULL_DOWN_ITEM::Load
UIW_PULL_DOWN_ITEM::New
UIW_PULL_DOWN_ITEM::NewFunction
UIW_PULL_DOWN_ITEM::Store

CHAPTER 18 - UIW_PULL_DOWN_MENU 377
General Members
UIW_PULL_DOWN_MENU::UIW_PULL_DOWN_MENU
UIW_PULL_DOWN_MENU::~UIW_PULL_DOWN_MENU
UIW_PULL_DOWN_MENU::Add
UIW_PULL_DOWN_MENU::ClassName
UIW_PULL_DOWN_MENU::Event
UIW_PULL_DOWN_MENU::Information
UIW_PULL_DOWN_MENU::ItemDepthSearch
UIW_PULL_DOWN_MENU::Subtract
UIW_PULL_DOWN_MENU::operator -
Storage Members
UIW_PULL_DOWN_MENU::UIW_PULL_DOWN_MENU
UIW_PULL_DOWN_MENU::Load
UIW_PULL_DOWN_MENU::New
UIW_PULL_DOWN_MENU::NewFunction
UIW_PULL_DOWN_MENU::Store

CHAPTER 19 - UIW_REAL 395
General Members
UIW_REAL::UIW_REAL
UIW_REAL::~UIW_REAL
UIW_REAL::ClassName
UIW_REAL::DataGet
UIW_REAL::DataSet

UIW_REAL::Event
UIW_REAL::Format

UIW_REAL::Information
UIW_REAL::SetLanguage
UIW_REAL::Validate
Storage Members
UIW_REAL::UIW_REAL
UIW_REAL::Load

UIW_REAL::New
UIW_REAL::NewFunction
UIW_REAL::Store

CHAPTER 20 - UIW_SCROLL_BAR 417
General Members
UIW_SCROLL_BAR::UIW_SCROLL_BAR
UIW_SCROLL_BAR::~UIW_SCROLL_BAR
UIW_SCROLL_BAR::ClassName
UIW_SCROLL_BAR::DrawItem
UIW_SCROLL_BAR::Event
UIW_SCROLL_BAR::Information
Storage Members
UIW_SCROLL_BAR::UIW_SCROLL_BAR
UIW_SCROLL_BAR::Load
UIW_SCROLL_BAR::New
UIW_SCROLL_BAR::NewFunction
UIW_SCROLL_BAR::Store

CHAPTER 21 - UIW_SPIN_CONTROL 441
General Members
UIW_SPIN_CONTROL::UIW_SPIN_CONTROL
UIW_SPIN_CONTROL::UIW_SPIN_CONTROL
UIW_SPIN_CONTROL::ClassName
UIW_SPIN_CONTROL::Event
UIW_SPIN_CONTROL::Information
Storage Members
UIW_SPIN_CONTROL::UIW_SPIN_CONTROL
UIW_SPIN_CONTROL::Load
UIW_SPIN_CONTROL::New
UIW_SPIN_CONTROL::NewFunction
UIW_SPIN_CONTROL::Store

CHAPTER 22 - UIW_STATUS_BAR 459
General Members
UIW_STATUS_BAR::UIW_STATUS_BAR
UIW_STATUS_BAR::~UIW_STATUS_BAR

xi

UIW_STATUS_BAR::ClassName
UIW_STATUS_BAR::DrawItem
UIW_STATUS_BAR::Event
UIW_STATUS_BAR::Information
Storage Members
UIW_STATUS_BAR::UIW_STATUS_BAR
UIW_STATUS_BAR::Load
UIW_STATUS_BAR::New
UIW_STATUS_BAR::NewFunction
UIW_STATUS_BAR::Store

CHAPTER 23 - UIW_STRING 473
General Members
UIW_STRING::UIW_STRING
UIW_STRING::~UIW_STRING
UIW_STRING::ClassName
UIW_STRING::DataGet
UIW_STRING::DataSet
UIW_STRING::DrawItem
UIW_STRING::Event
UIW_STRING::Information
UIW_STRING::ParseRange
Storage Members
UIW_STRING::UIW_STRING
UIW_STRING::Load
UIW_STRING::New
UIW_STRING::NewFunction
UIW_STRING::Store

CHAPTER 24 - UIW_SYSTEM_BUTTON 499
General Members
UIW_SYSTEM_BUTTON::UIW_SYSTEM_BUTTON
UIW_SYSTEM_BUTTON::~UIW_SYSTEM_BUTTON
UIW_SYSTEM_BUTTON::ClassName
UIW_SYSTEM_BUTTON::Event
UIW_SYSTEM_BUTTON::Generic
UIW_SYSTEM_BUTTON::Information
UIW_SYSTEM_BUTTON::SetDecorations
UIW_SYSTEM_BUTTON::SetLanguage
Storage Members
UIW_SYSTEM_BUTTON::UIW_SYSTEM_BUTTON
UIW_SYSTEM_BUTTON::Load
UIW_SYSTEM_BUTTON::New

xii

UIW_SYSTEM_BUTTON::NewFunction
UIW_SYSTEM_BUTTON::Store

CHAPTER 25 - UIW_TABLE 519
General Members
UIW_TABLE::UIW_TABLE
UIW_TABLE::~UIW_TABLE
UIW_TABLE::DataGet
UIW_TABLE::DataSet
UIW_TABLE::DeleteRecord
UIW_TABLE::DrawItem
UIW_TABLE::DrawRecord
UIW_TABLE::Event
UIW_TABLE::GetRecord
UIW_TABLE::Information
UIW_TABLE::InsertRecord
UIW_TABLE::SetCurrent
Storage Members
UIW_TABLE::UIW_TABLE
UIW_TABLE::Load
UIW_TABLE::New
UIW_TABLE::NewFunction
UIW_TABLE::Store

CHAPTER 26 - UIW_TABLE_HEADER 541
General Members
UIW_TABLE_HEADER::UIW_TABLE_HEADER
UIW_TABLE_HEADER::~UIW_TABLE_HEADER
UIW_TABLE_HEADER::DrawItem
UIW_TABLE_HEADER::Event
UIW_TABLE_HEADER::Information
Storage Members
UIW_TABLE_HEADER::UIW_TABLE_HEADER
UIW_TABLE_HEADER::Load
UIW_TABLE_HEADER::New
UIW_TABLE_HEADER::NewFunction
UIW_TABLE_HEADER::Store

CHAPTER 27 - UIW_TABLE_RECORD 555
General Members
UIW_TABLE_RECORD::UIW_TABLE_RECORD
UIW_TABLE_RECORD::DrawItem
UIW_TABLE_RECORD::Event

xiii

UIW_TABLE_RECORD::Information
UIW_TABLE_RECORD::RegionMax
UIW_TABLE_RECORD::VirtualRecord
Storage Members
UIW_TABLE_RECORD::UIW_TABLE_RECORD
UIW_TABLE_RECORD::Load
UIW_TABLE_RECORD::New
UIW_TABLE_RECORD::NewFunction
UIW_TABLE_RECORD::Store

CHAPTER 28 - UIW_TEXT 571
General Members
UIW_TEXT::UIW_TEXT
UIW_TEXT::~UIW_TEXT
UIW_TEXT::ClassName
UIW_TEXT::CursorOffset
UIW_TEXT::DataGet
UIW_TEXT::DataSet
UIW_TEXT::DrawItem
UIW_TEXT::Event
UIW_TEXT::GetCursorPos
UIW_TEXT::Information
UIW_TEXT::SetCursorPos
Storage Members
UIW_TEXT::UIW_TEXT
UIW_TEXT::Load
UIW_TEXT::New
UIW_TEXT::NewFunction
UIW_TEXT::Store

CHAPTER 29 - UIW_TIME 597
General Members
UIW_TIME::UIW_TIME
UIW_TIME::~UIW_TIME
UIW_TIME::ClassName
UIW_TIME::DataGet
UIW_TIME::DataSet
UIW_TIME::Event
UIW_TIME::Information
UIW_TIME::SetLanguage
UIW_TIME::Validate
Storage Members
UIW_TIME::UIW_TIME

xiv

UIW_TIME::Load
UIW_TIME::New
UIW_TIME::NewFunction
UIW_TIME::Store

CHAPTER 30 - UIW_TITLE 621
General Members
UIW_TITLE::UIW_TITLE
UIW_TITLE::~UIW_TITLE
UIW_TITLE::ClassName
UIW_TITLE::DataGet
UIW_TITLE::DataSet
UIW_TITLE::Event
UIW_TITLE::Information
Storage Members
UIW_TITLE::UIW_TITLE
UIW_TITLE::Load
UIW_TITLE::New
UIW_TITLE::NewFunction
UIW_TITLE::Store

CHAPTER 31 - UIW_TOOL_BAR 637
General Members
UIW_TOOL_BAR::UIW_TOOL_BAR
UIW_TOOL_BAR:: UIW_TOOL_BAR
UIW_TOOL_BAR::ClassName
UIW_TOOL_BAR::Event
UIW_TOOL_BAR::Information
Storage Members
UIW_TOOL_BAR::UIW_TOOL_BAR
UIW_TOOL_BAR::Load
UIW_TOOL_BAR::New
UIW_TOOL_BAR::NewFunction
UIW_TOOL_BAR::Store

CHAPTER 32 - UIW_VT_LIST 653
General Members
UIW_VT_LIST::UIW_VT_LIST
UIW_VT_LIST::~UIW_VT_LIST
UIW_VT_LIST::Add
UIW_VT_LIST::ClassName
UIW_VT_LIST::Destroy
UIW_VT_LIST::Event

UIW_VT_LIST::Information
UIW_VT_LIST::RegionMax
UIW_VT_LIST::ScrollEvent
UIW_VT_LIST::Sort
UIW_VT_LIST: Subtract
UIW_VT_LIST::operator -
UIW_VT_LIST::TopWidget
Storage Members
UIW_VT_LIST::UIW_VT_LIST
UIW_VT_LIST::Load
UIW_VT_LIST::New
UIW_VT_LIST::NewFunction
UIW_VT_LIST::Store

CHAPTER 33 - UIW_WINDOW 679
General Members
UIW_WINDOW::UIW_WINDOW
UIW_WINDOW::~UIW_ WINDOW
UIW_WINDOW::Add
UIW_WINDOW::operator +
UIW_WINDOW::CheckSelection
UIW_WINDOW::ClassName
UIW_WINDOW::Current
UIW_WINDOW::Destroy
UIW_WINDOW::DrawItem
UIW_WINDOW::Event
UIW_WINDOW::First
UIW_WINDOW::Generic
UIW_WINDOW::Get
UIW_WINDOW::Information
UIW_WINDOW::Last
UIW_WINDOW::RegionMax
UIW_WINDOW::ScrollEvent
UIW_WINDOW::SetLanguage
UIW_WINDOW::StringCompare
UIW_WINDOW::Subtract
UIW_WINDOW::operator -
Storage Members
UIW_WINDOW::UIW_WINDOW
UIW_WINDOW::Load
UIW_WINDOW::New
UIW_WINDOW::NewFunction
UIW_WINDOW::Store

CHAPTER 34 - ZAF_DIALOG_WINDOW 721
General Members
ZAF_DIALOG_WINDOW::ZAF_DIALOG_WINDOW
ZAF_DIALOG_WINDOW::~ZAF_DIALOG_WINDOW
ZAF_DIALOG_WINDOW::Control
Storage Members
ZAF_DIALOG_WINDOW::ZAF_DIALOG_WINDOW
ZAF_DIALOG_WINDOW::Load
ZAF_DIALOG_WINDOW::New
ZAF_DIALOG_WINDOW::Store

CHAPTER 35 - ZAF_MESSAGE_WINDOW 733
General Members
ZAF_MESSAGE_WINDOW::ZAF_MESSAGE_WINDOW
ZAF_MESS AGE_WINDOW::Control

APPENDIX A - SUPPORT DEFINITIONS 737
Typedefs and Preprocessor Variables
FALSE
TRUE
ZIL_BAK
ZIL_BIGENDIAN
ZIL_BITMAP_HANDLE
ZIL_COLOR
ZIL_COMPARE_FUNCTION
ZIL_DECOMPOSE
ZIL_DO_FILE_118N
ZIL_DO_OS_118N
ZIL_EXIT_FUNCTION
ZIL_EXT
ZIL_HARDWARE
ZIL_HOTMARK
ZIL_IBIGNUM
ZIL_ICHAR
ZIL_ICON_HANDLE
ZIL_INT8
ZIL_INT16
ZIL_INT32
ZIL_LITTLEENDIAN
ZIL_LOAD
ZIL_MACINTOSH
ZIL_MAXPATHLEN
ZIL_MOTIF

xvii

ZIL_MOTIF_STYLE
ZIL_MSDOS
ZIL_MSWINDOWS
ZIL_MSWINDOWS_STYLE
ZIL_NEW_FUNCTION
ZIL_NUMBERID
ZIL_OLD_DEFS
ZIL_OS2
ZIL_OS2_STYLE
ZIL_PATHSEP
ZIL_POSIX
ZIL_RBIGNUM
ZIL_SCREENID
ZIL_SHADOW_BORDER
ZIL_STANDARD_BORDER
ZIL_STORE
ZIL_TEXT_ONLY
ZIL_3D_BORDER
ZIL_3x_COMPAT
ZIL_UINT8
ZIL_UINT16
ZIL_UINT32
ZIL_UNICODE
ZIL_USER_FUNCTION
ZIL_WINNT
Macros
AbsValue
attrib
FlagSet
FlagsSet
HIWORD
LOWORD
MaxValue
MinValue
ZIL_NULLF
ZIL_NULLH
ZIL_NULLP
ZIL_VOIDF
ZIL_VOIDP

APPENDIX B - SYSTEM EVENTS 757

APPENDIX C - LOGICAL EVENTS 763

APPENDIX D - CLASS IDENTIFIERS 769

APPENDIX E - OpenZinc OBJECT STORAGE 773

APPENDIX F - CHARACTER SETS 785

APPENDIX G - ISO COUNTRY CODES 789
Country/Locale Codes

APPENDIX H - ISO LANGUAGE CODES 797
Language Codes

APPENDIX | - HARDWARE ISSUES 803
Binding Device Drivers
Macros
Generic Keyboard Functions
I_KeyboardClose
I_KeyboardOpen
I_KeyboardQuery
I_KeyboardRead
Generic Mouse Functions
I_MouseClose
I_MouseOpen
Global Variables
Text Driver Functions
I_ScreenClose
I_ScreenOpen
I_ScreenPut
I_CursorPosition
I_CursorRemove
Generic Internationalization Functions
I_GetCodePage

INDEX 813

xix

INTRODUCTION

The Programmer's Reference Volume 2 contains descriptions of OpenZinc Application
Framework classes, the calling conventions used to invoke the class member functions,
short code samples using the class member functions, and information about other related
classes or example programs.

Some miscellaneous information is presented in the Appendices. This section
(Appendices A through |) contains support definitions, system event definitions, logical
event definitions, class identifications, storage information, internationalization
information, and some hardware issues.

Introduction 1

UI_SAMPLE_CLASS::SampleFunction

Syntax
returnValue SampleFunction(typel parameter 1, type2 *parameter2);

Portability
This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics • Windows
• OSF/Motif • Curses

• OS/2
• NEXTSTEP

NOTE: A blackened box indicates a supported environment.

Remarks
A brief description of what SampleFunction() does.

• returnValueout gives a complete description of the return value. The subscript "out"
indicates that the variable (the return value in this case) does not require an initial
value and that it receives a value from the function.

• parameter1in gives a complete description of function parameter 1. The subscript
"in" indicates that the variable requires an initial value and that it is not changed by
the function.

• parameter2in/out gives a complete description of function parameter 2. The subscript
"in/out" indicates that the variable requires an initial value, but that it may also
receive a different value from the function.

Example
This section provides a coding example of how SampleFunction() was used in the
development of other library functions or development utilities. The function itself often
appears in bold type within the example code.

2 OpenZinc Application Framework—Programmer's Reference Volume 2

CLASSES AND STRUCTURES

General purpose
attrib
FlagSet
FlagsSet
MaxValue
MinValue
ZIL_NULLF
ZIL_NULLH
ZIL_NULLP
TRUE
FALSE
ZIL_INT8
ZIL_UINT8
ZIL_INT16
ZIL_UINT16
ZIL_INT32
ZIL_UINT32
ZIL_VOIDF
ZIL_VOIDP

struct UI_ITEM

class UI_APPLICATION
class UI_ELEMENT
class UI_LIST
class UI_LIST_BLOCK
class UI_PATH
class UI_PATH_ELEMENT
class ZIL_BIGNUM
class ZIL_DATE
class ZIL_TIME
class ZIL_UTIME

Error system
class UI_ERROR_STUB

class UI_ERROR_SYSTEM

Event management
struct UI_EVENT
struct UI_EVENT_MAP
struct UI_KEY
struct UI_POSITION
struct UI_REGION
struct UI_SCROLL_INFORMATION

class UI_DEVICE
class UI_EVENT_MANAGER
class UI_QUEUE_BLOCK
class UI_QUEUE_ELEMENT
class UID_CURSOR
class U1D_KEYB0ARD
class UID_MOUSE
class UID_TIMER

Introduction 3

Help system
class UI_HELP_STUB
class UI_HELP_SYSTEM

Internationalization
struct ZIL_BITMAP_ELEMENT
struct ZIL_LOCALE_ELEMENT
struct ZIL_LANGUAGE_ELEMENT
struct ZIL_TEXT_ELEMENT

class ZIL_DECORATION
class ZIL_DECORATION_MANAGER
class ZIL_I18N
class ZIL_I18N_MANAGER
class ZIL_INTERNATIONAL
class ZIL_LANGUAGE
class ZIL_LANGUAGE_MANAGER
class ZIL_LOCALE
class ZIL_LOCALE_MANAGER
class ZIL_MAP_CHARS

Printer
class UI_PRINTER

Screen display
struct UI_PALETTE
struct UI_PALETTE_MAP
struct UI_POSITION
struct UI_REGION

class UI_BGI_DISPLAY
class UI_DISPLAY
class UI_GRAPHICS_DISPLAY
class UI_MACINTOSH_DISPLAY
class UI_MSC_DISPLAY
class UI_MSWINDOWS_DISPLAY
class UI_NEXTSTEP_DISPLAY
class UI_0S2_DISPLAY
class UI_REGION_ELEMENT
class UI_REGION_LIST
class UI_TEXT_DISPLAY
class UI_WCC_DISPLAY
class UI_XT_DISPLAY

Storage
class ZIL_DELTA_STORAGE_OBJECT
class ZIL_DELTA_STORAGE_OBJECT_READ_ONLY
class ZIL_STORAGE
class ZIL_STORAGE_DIRECTORY
class ZIL_STORAGE_OBJECT

4 OpenZinc Application Framework—Programmer's Reference Volume 2

class ZIL_STORAGE_OBJECT_READ_ONLY
class ZIL_STORAGE_READ_ONLY

Window management
struct UI_SCROLL_INFORMATION

class UI_ATTACHMENT
class UI_CONSTRAINT
class UI_DIMENSION_CONSTRAINT
class UI_GEOMETRY_MANAGER
class UI_RELATIVE_CONSTRAINT
class UI_WINDOW_MANAGER
class UI_WINDOW_OBJECT
class UIW_BIGNUM
class UIW_BORDER
class UIW_BUTTON
class UIW_COMBO_BOX
class UIW_DATE
class UIW_FORMATTED_STRING
class UIW_GROUP
class UIW_HZ_LIST
class UIW_ICON
class UIW_INTEGER
class UIW_MAXIMIZE_BUTTON
class UIW_MINIMIZE_BUTTON
class UIW_NOTEBOOK
class UIW_POP_UP_ITEM
class UIW_POP_UP_MENU
class UIW_PROMPT
class UIW_PULL_DOWN_ITEM
class UIW_PULL_DOWN_MENU
class UIW_REAL
class UIW_SCROLL_BAR
class UIW_SPIN_CONTROL
class UIW_STATUS_BAR
class UIW_STRING
class UIW_SYSTEM_BUTTON
class UIW_TABLE
class UIW_TABLE_HEADER
class UIW_TABLE_RECORD
class UIW_TEXT
class UIW_TIME
class UIW_TITLE
class UIW_TOOL_BAR
class UIW_VT_L1ST
class UIW_WINDOW
class ZAF_DIALOG_WINDOW
class ZAF_MESSAGE_WINDOW

Introduction 5

INCLUDE FILE HIERARCHY

ULENV.HPP
// Version information
// General OpenZinc Switches
// Optimization switches for various compiler problems.
// Presentation switches for the library.
// Switches for the international language versions.
// Compiler/Environment Default Dependencies
// ZIL_NULLP, ZIL_NULLF, ZIL_NULLH, ZIL_V01DF, ZIL_VOIDP
// BORLAND
// MICROSOFT
// IBM
// SYMANTEC & ZORTECH
// WATCOM
// DJGPP, GNU C++ port DOS (1.08)
// HP-UX, CC (cfront from HP) and Motif
// MS-DOS, Quarterdeck DESQview/X with Motif, DJGPP G++
// SCO UNIX 3.2 with Motif or Curses
// Solaris 2.1, CC (cfront from SunPro) and Motif
// Siemens/Nixdorf SINIX and Motif
// DEC 4000 OSF/1 1.3
// Compiler/Hardware Typedef Sizes
// TRUE/FALSE
// UIF_FLAGS
// UIS_STATUS
// Macros
// Version 3.6, 3.b, 3.0 compatibility

UI_GEN.HPP
if ! defined (UI_GEN_HPP)
define UI_GEN_HPP
if !defined (UI_ENV_HPP)
include <ui_env.hpp>
endif

// ZIL_OBJECTID
// EVENT_TYPE
// ZIL_INFO_REQUEST
// UI_ELEMENT
// UI_LIST
// UI_LIST_BLOCK
// ZIL_BIT_VECTOR
// ZIL_MESSAGE
// ZIL_I18N, ZIL_LOCALE, ZIL_LANGUAGE, & ZIL_DECORATION
// ZIL_MAP_CHARS
// ZIL_INTERNATIONAL
// ZIL_BIGNUM
// NMF_FLAGS
// NMI_RESULT
// ZIL_UTIME
/ / ZIL_DATE
// DTF_FLAGS
// DTI_RESULT
// ZIL_TIME
// TMF_FLAGS
// TMI_RESULT
// UI_PATH_ELEMENT & UI_PATH
// ZIL_STORAGE_OBJECT & ZIL_STORAGE
// UIS_FLAGS
// ZIL_DELTA_STORAGE_OBJECT

6 OpenZinc Application Framework—Programmer's Reference Volume 2

// Version 3.6, 3.5, 3.0 compatibility

UI_DSP.HPP
#if !defined(UI_DSP_HPP)
define UI_DSP_HPP
if !defined(UI_GEN_HPP)
include <ui_gen.hpp>
endif

// ZIL_SCREENID, ZIL_BITMAP_HANDL E, ZIL_ICON_HANDLE, ZIL_SCREEN_CELL
// UI_POSITION
// UI_REGION, UI_REGION_ELEMENT, UI_REGION_LIST
// Color information
// Font information
// Image information
// Pattern information
// UI_PALETTE
// UI_DISPLAY
// UI_BGI_DISPLAY
// UI_GRAPHICS_DISPLAY
// UI_XT_DISPLAY
// UI_MSC_DISPLAY
// UI_MSWINDOWS_DISPLAY
// UI_OS2_DISPLAY
// UI_TEXT_DISPLAY
// TDM_MODE
// UI_WCC_DISPLAY
// UI_MACINTOSH_DISPLAY
// UI_NEXTSTEP_DISPLAY
// UI_PRINTER
// Version 3.6 compatibility

ULMAP.HPP
if !defined(UI_MAP_HPP)
define UI_MAP_HPP
if !defined(UI_DSP_HPP)
include <ui_dsp.hpp>
endif

// Compiler/Environment Dependencies
// Special hotkey values
// ZIL_MSDOS
// ZIL_MSWINDOWS
// ZIL_OS2
// ZIL_Xl1
// ZIL_CURSES
// ZIL_MACINTOSH
// ZIL_NEXTSTEP
// Version 3.6 compatibility

ULEVT.HPP
#if !defined(UI_EVT_HPP)
define UI_EVT_HPP
if !defined(UI_DSP_HPP)
include <ui_dsp.hpp>
endif

Introduction 7

// EVENT_TYPE
// UI_KEY
// shiftState
// Mouse Information
// UI_SCROLL_INFORMATION
// UI_EVENT
// System wide messages
// ZIL_SYSTEM_EVENT
// ZIL_LOGICAL_EVENT
// UI_DEVICE
// Device type messages
// Device state messages
// Device image messages
// UID_CURSOR
// Cursor image messages
// UID_KEYBOARD
// UID_MOUSE
// Mouse image messages
// UID_TIMER
// TMR_FLAGS
// UI_QUEUE_ELEMENT & UI_QUEUE_BLOCK
// UI_EVENT_MANAGER
// Q_FLAGS
// Version 3.6 compatibility

UI_WIN.HPP
#if !defined(UI_WIN_HPP)
define UI_WIN_HPP
if !defined(UI_EVT_HPP)
include <ui_evt.hpp>
endif

// NUMBERID
// UI_ITEM
// Window object identifications
// ZIL_SIMPLE_OBJECTID
// ZIL_COMPLEX_OBJECTID
// ZIL_COMPOSITE_OBJECTID
// Window object system messages
// ZIL_SYSTEM_EVENT
// ZIL_LOGICAL_EVENT
// ZIL_DESIGNER_EVENT
// UI_PALETTE_MAP
// ZIL_LOGICAL_PALETTE
// UI_EVENT_MAP
// UI_WINDOW_OBJECT
// WOF_FLAGS
// WOAF_FLAGS
// WOS_STATUS
// UI_WINDOW_OBJECT::ZIL_INFO_REQUEST
// UI_HELP_CONTEXT
// Underline character information
// Border widths tor WOF_BORDER flag option
// UIW_WINDOW
// WNF_FLAGS
// UIW_WINDOW::ZIL_INFO_REQUEST
II UI_WINDOW_MANAGER
// U1W_B0RDER
// BDF_FLAGS
// UIW_PROMPT
// UIW_BUTTON
// BTF_FLAGS
// BTS_STATUS
// UIW_BUTTON::ZIL_INFO_REQUEST
// UIW_TITLE

8 OpenZinc Application Framework—Programmer's Reference Volume 2

// UIW_MAXIMIZE_BUTTON
// UIW_MINIMIZE_BUTTON
// UIW_ICON
// ICF_FLAGS
// UIW_ICON::ZIL_INFO_REQUEST
// UIW_POP_UP_MENU
// UIW_POP_UP_ITEM
// MNIF_FLAGS
// UIW_PULL_DOWN_MENU
// UIW_PULL_DOWN_ITEM
// UIW_SYSTEM_BUTTON
// SYF_FLAGS
// UIW_STRING
// STF_FLAGS
// UIW_DATE
// UIW_FORMATTED_STRING
// FMI_RESULT
// UIW_BIGNUM
// UIW_INTEGER
// UIW_REAL
// UIW_TIME
// UIW_TEXT
// UIW_GROUP
// UIW_VT_L1ST
// UIW_HZ_LIST
// UIW_COMBO_BOX
// UIW_COMBO_BOX::ZIL_INFO_REQUEST
// UIW_S PIN_CONTROL
// UIW_SCROLL_BAR
// sbFlags
// UIW_TOOL_BAR
// UIW_STATUS_BAR
// UIW_NOTEBOOK
// UIW_NOTEBOOK::ZIL_INFO_REQUEST
// UIW_TABLE
// UIW_TABLE::ZIL_INFO_REQUEST
// tblFlags
// thFlags
// UI_ERROR_SYSTEM
// UI_HELP_SYSTEM
// UI_APPLICATION
// ZAF_DIALOG_WINDOW
// ZIL_DIALOG_EVENT
// ZAF_MESSAGE_WINDOW
// UI_CONSTRAINT
// UI_CONSTRAINT::ZIL_INFO_REQUEST
// UI_ATTACHMENT
// ATCF_FLAGS
// UI_ATTACHMENT::ZIL_INFO_REQUEST
// UI_DIMENSION_CONSTRAINT
// DNCF_FLAG
// UI_DIMENSION_CONSTRAINT::ZIL_INFO_REQUEST
// UI_RELATTVE_CONSTRAINT
// RLCF_FLAG
// UI_RELATIVE_CONSTRAINT::ZIL_INFO_REQUEST
// UI_GF.OMETRY_MANAGER
// Message indexes for the help and error system windows.
// Version 3.6 compatibility

Introduction 9

CLASS HIERARCHY

10 OpenZinc Application Framework—Programmer's Reference Volume 2

Introduction 11

33 OpenZinc Application Framework—Programmer's Reference Volume 2

Introduction 32

OpenZinc Application Framework—Programmer's Reference Volume 2

CHAPTER 1 - UIW_BIGNUM

The UIW_BIGNUM class is used to display numeric information and to collect
information, in numeric form, from an end-user. The UIW_BIGNUM object provides
special formatting features (e.g., currency, credit, percent, etc.) as well as the capability
to use large numbers with high precision. By default, UIW_BIGNUM allows up to 30
digits to the left of the decimal point and up to 8 digits to the right of the decimal point.
The UIW_BIGNUM class is a high-level object that is used to interact with the end-user.
It makes use of the ZIL_BIGNUM class, which is a low-level object that handles the
details of numeric data manipulation. See "Chapter 49—ZIL_BIGNUM" of Program-
mer's Reference Volume 1 for more information about the ZIL_BIGNUM class. The
figure below shows a graphic implementation of a window with several variations of the
UIW_BIGNUM class object:

The UIW_BIGNUM class is declared in UI_WIN.HPP. Its public and protected
members are:

class ZIL_EXPORT_CLASS UIW_BIGNUM : public UIW_STRTNG {
public:

static ZIL_ICHAR _className[];
static int defaultInitialized;
NMF_FLAGS nmFlags;

#if defined (ZIL_3x_COMPAT)
static NMF_FLAGS rangeFlags;

#endif

UIW_BIGNUM(int left, int top, int width, ZIL_BIGNUM *value,
const ZIL_ICHAR *range = ZIL_NULLP(ZIL_ICHAR),
NMF_FLAGS nmFlags = NMF_NO_FLAGS,
WOF_FLAGS woFlags = WOF_BORDER | WOF_AUTO_CLEAR,
ZIL_USER_FUNCTION userFunction = ZIL_NULLF(ZIL_USER_FUNCTION)) ;

Chapter 17 - UIW_PULL_DOWN_ITEM 15

virtual ~UIW_BIGNUM(void);
virtual ZIL_ICHAR *ClassName(void);
ZIL_BIGNUM *DataGet(void);
void DataSet(ZIL_BIGNUM *value);
virtual EVENT_TYPE Event(const UI_EVENT &event);
virtual void *Information(ZIL_INFO_REQUEST request, void *data,

ZIL_OBJECTID objectID = ID_DEFAULT);
virtual int Validate(int processError = TRUE);

#if defined(ZIL_LOAD)
virtual ZIL_NEW_FUNCTION NewFunction(void);
static UI_WINDOW_OBJECT *New(const ZIL_ICHAR *name,

ZIL_STORAGE_READ_ONLY *file = ZIL_NULLP(ZIL_STORAGE_READ_ONLY),
ZIL_STORAGE_OBJECT_READ_ONLY *object =

Z1L_NULLP(Z1L_ST0RAGE_0BJECT_READ_0NLY) ,
UI_ITEM *objectTable = ZIL_NULI,P (UI_1TEM) ,
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

UIW_BIGNUM(const ZIL_ICHAR *name, ZIT,_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object,
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP (UI_ITEM)) ;

virtual void Load(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

#endif
#if defined(ZIL_STORE)

virtual void Store(const ZIL_ICHAR *name, ZIL_STORAGE *file,
ZIL_STORAGE_OBJECT *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

#endif

void SetLanguage(const ZIL_ICHAR *languageName);

protected:
ZIL_BIGNUM *number;
ZIL_ICHAR *range;
const ZIL_LANGUAGE *myLanguage;

} ;

General Members

This section describes those members that are used for general purposes.

• _className contains a string identifying the class. The string is always the same
name as the class, is always in English, and never changes. For example, for the
UIW_BIGNUM class, _className is "UIW_BIGNUM."

• defaultlnitialized indicates if the default language strings for this object have been set
up. The default strings are located in the file LANG_DEF.CPP. If defaultlnitialized
is TRUE, the strings have been set up. Otherwise they have not been.

• rangeFlags are flags that define how the range values are interpreted. rangeFlags
is set to NMF_NO_FLAGS by default.

16 OpenZinc Application Framework—Programmer's Reference Volume 2

• nmFlags are flags that define the operation of the UIW_BIGNUM class. A full
description of the number flags is given in the UIW_BIGNUM constructor.

• number is a pointer to a ZIL_BIGNUM that is used to manage the low-level bignum
information. If the WOF_NO_ALLOCATE_DATA flag is set, this member will
simply point to the ZIL_BIGNUM value passed in.

• range is a string that specifies the range(s) of acceptable bignum values, range is a
copy of the range that is passed to the constructor.

• myLanguage is the ZIL_LANGUAGE object that contains the string translations for
this object.

UIW_BIGNUM::UIW_BIGNUM

Syntax
#include <ui_win.hpp>

UIW_BIGNUM(int left, int top, int width, ZIL_BIGNUM *value,
const ZIL_ICHAR "range = ZIL_NULLP(ZIL_ICHAR),
NMF_FLAGS nmFlags = NMF_NO_FLAGS,
WOF_FLAGS woFlags = WOF_BORDER | WOF_AUTO_CLEAR,
ZIL_USER_FUNCTION userFunction = ZIL_NULLP(ZIL_USER_FUNCTION));

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This constructor creates a new UIW_BIGNUM class object.

• left i n and topin is the starting position of the bignum field within its parent window.
Typically, these values are in cell coordinates. If the WOF_MINICELL flag is set,
however, these values will be interpreted as minicell values.

Chapter 1 - UIW_BIGNUM 17

39 OpenZinc Application Framework—Programmer's Reference Volume 2

• widthin is the width of the bignum field. Typically, this value is in cell coordinates.
If the WOF_MINICELL flag is set, however, this value will be interpreted as a
minicell value. The height of the bignum field is determined automatically by the
UIW_BIGNUM object.

• valuein is a pointer to a ZIL_BIGNUM object. Its value will be used as the initial
value.

• rangein is a string that specifies the valid numeric ranges. A range consists of a
minimum value, a maximum value, and the values in between. For example, if a
range of "1000.. 10000" is specified, the UIW_BIGNUM class object will only
accept those numeric values that fall between 1,000 and 10,000, inclusive. Open-
ended ranges can be specified by leaving the minimum or maximum value off. For
example, a range of "500.." will allow all values that are 500 or greater. Multiple,
disjoint ranges can be specified by separating the individual ranges with a slash (i.e.
'/'). For example, "100.. 199/1000.." will accept all values from 100 to 199 and
values of 1000 or greater. If range is NULL, any number within the absolute range
is accepted. This string is copied by the UIW_BIGNUM class object to the range
member variable.

• nmFlagsin describes how the bignum should display and interpret the numeric
information. The following flags (declared in UI_GEN.HPP) control the general
presentation of a UIW_BIGNUM class object:

Chapter 1 - UIW_BIGNUM 19

• woFlagsin are flags (common to all window objects) that determine the general
operation of the bignum object. The following flags (declared in UI_WIN.HPP)
affect the operation of a UIW_BIGNUM class object:

WOF_AUTO_CLEAR—Automatically marks the entire buffer if the end-user
tabs to the field from another object. If the user then enters data (without first
having pressed any movement or editing keys) the entire field will be replaced.
This flag is set by default in the constructor.

WOF_BORDER—Draws a border around the object. The graphical border's
appearance will depend on the operating system used, and, if in DOS, on the
graphics style being used. In text mode, a border may or may not be drawn,
depending on the text style being used. See "Appendix A—Support
Definitions" in this manual for information on changing DOS graphics mode
styles and text mode styles. This flag is set by default in the constructor.

WOF_INVALID—Sets the initial status of the field to be "invalid." Invalid
entries fit in the absolute range determined by the object type but do not fulfill
all the requirements specified by the program. For example, a bignum may
initially be set to 200, but the final number, edited by the end-user, must be in
the range "10.. 100." The initial number in this example fits the absolute range
requirements of a UIW_BIGNUM class object but does not fit into the specified
range. By denoting the field as invalid, you force the user to enter an acceptable
value.

WOF_JUSTIFY_CENTER—Center-justifies the data within the displayed field.

WOF_JUSTIFY_RIGHT—Right-justifies the data within the displayed field.

WOF_MINICELL—Causes the position and size values that were passed into
the constructor to be interpreted as minicells. A minicell is a fraction the size
of a normal cell. Greater precision in object placement is achieved by specifying
an object's position in minicell coordinates. A minicell is 1/1Oth the size of a
normal cell by default.

WOF_NO_ALLOCATE_DATA—Prevents the object from allocating a buffer
to store the data. If this flag is set, the programmer is responsible for allocating
the memory for the data. The programmer is also responsible for deallocating
that memory when it is no longer needed.

WOF_NO_FLAGS—Does not associate any special window flags with the
object. Setting this flag left-justifies the data. This flag should not be used in
conjunction with any other WOF flags.

WOF_NON_FIELD_REGION—Causes the object to ignore its position and
size parameters and use the remaining available space in its parent object.

WOF_NON_SELECTABLE—Prevents the object from being selected. If this
flag is set, the user will not be able to position on nor edit the bignum
information. Typically, the field will be drawn in such a manner as to appear
non-selectable (e.g., it may appear lighter than a selectable field).

WOF_SUPPORT_OBJECT—Causes the object to be placed in the parent
object's support list. The support list is reserved for objects that are not
displayed as part of the user region of the window. Care should be used when
setting this flag on an object that does not use it by default as undesirable effects
may occur. This flag generally should not be used by the programmer.

WOF_UNANSWERED—Sets the initial status of the field to be "unanswered."
An unanswered field is displayed as an empty field.

WOF_VIEW_ONLY—Prevents the object from being edited. However, the
object may become current and the user may scroll through the data, mark it, and
copy it.

userFunctionin is a programmer defined function that will be called by the library at
certain points in the user's interaction with an object. The user function will be
called by the library when:

1—the user moves onto the field,

41 OpenZinc Application Framework—Programmer's Reference Volume 2

2—the <ENTER> key is pressed while the field is current or, if the field is in
a list, the mouse is clicked on it, or

3—the user moves to a different field in the window or to a different window.

Because the user function is called at these times, the programmer can do data
validation or any other type of necessary operation. The definition of the
userFunction is as follows:

EVENT_TYPE FunctionName(UI_WINDOW_OBJECT * object,
UI_EVENT &event, EVENT_TYPE ccode);

returnValueout indicates if an error has occurred. returnValue should be 0 if the
no error occurred. Otherwise, the programmer should call the error system with
an appropriate error message and return -1.

objectin is a pointer to the object for which the user function is being called.
This argument must be typecast by the programmer if class-specific members
need to be accessed.

eventin is the run-time message passed to the object.

ccodein is the logical or system code that caused the user function to be called.
This code (declared in UI_EVT.HPP) will be one of the following constant
values:

L_SELECT—The <ENTER> key was pressed while the field was current
or, if the field is in a list, the mouse was clicked on the field.

S_CURRENT—The object just received focus because the user moved to
it from another field or window. This code is sent before any editing
operations are permitted.

S_NON_CURRENT—The object just lost focus because the user moved to
another field or window.

NOTE: If a user function is associated with the object, then Validate() must be
called explicitly from within userFunction if range checking is desired.

Chapter 1 - UIW_BIGNUM 21

Example
#include <ui_win.hpp>

ExampleFunction(UI_WINDOW_MANAGER *windowManager) {
// Create a window and add it to the window manager.
ZIL_BIGNUM value(0);
UIW_WINDOW *window = new UIW_WINDOW(0, 0, 40, 10);
*window

+ new UIW_BORDER
+ new UIW_TITLE(" Sample numbers ")
+ new UIW_PROMPT(2, 1, "Standard:")
+ new UIW_BIGNUM(12, 1, 20, &value, "0..10000")
+ new UIW_PROMPT(2, 2, "Currency:")
+ new UIW_BIGNUM(12, 2, 20, &value, "0..10000",

NMF_CURRENCY | NMF_DECIMAL(2))
+ new UIW_PROMPT(2, 3, "Commas:")
+ new UIW_BIGNUM(12, 3, 20, &value, "0..10000", NMF_COMMAS);

*windowManager + window;

// The number fields are automatically destroyed when the window
// is destroyed.

}

UIW_BIGNUM::~UIW_BIGNUM

Syntax
#include <ui_gen.hpp>

virtual ~UIW_BIGNUM(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows
• Macintosh • OSF/Motif • Curses

• OS/2
• NEXTSTEP

Remarks
This virtual destructor destroys the class information associated with the UIW_BIGNUM
object.

22 OpenZinc Application Framework—Programmer's Reference Volume 2

Example
#include <ui_gen.hpp>

ExampleFunction()
{

ZIL_BIGNUM number("100");

UIW_BIGNUM *bignum = new UIW_BIGNUM(1, 1, 20, &number);

delete bignum;
}

UIW_BIGNUM::ClassName

Syntax
#include <ui_win.hpp>

virtual ZIL_ICHAR *ClassName(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks

This virtual function returns the object's class name.

• returnValueout is a pointer to _className.

UIW_BIGNUM::DataGet

Syntax

#include <ui_win.hpp>

ZIL_BIGNUM *DataGet(void);

Chapter 1 - UIW_BIGNUM 23

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function gets the current numeric information associated with the UIW_BIGNUM
class object.

• retumValueout is a pointer to a ZIL_BIGNUM object containing the current bignum
value.

Example
#include <ui_win.hpp>

EVENT_TYPE BignumUserFunction(UI_WINDOW_OBJECT *object, UI_EVENT &, EVENT_TYPE
ccode) {

if (ccode != S_NON_CURRENT)
return (ccode);

// Do specific validation.
ZIL_BIGNUM *bignum = ((UIW_BIGNUM *)object)->DataGet();

// Call the default Validate function to check for valid bignum.
int valid = object->Validate(TRUE);

// Call error system if the bignum is larger than maximum value,
extern ZIL_BIGNUM _maxValue;
if (valid == NMI_OK && *bignum > _maxValue) {

valid = NMI_OUT_OF_RANGE;
char bignumString[64];
_maxValue.Export(bignumString, 64, NMF_NO_FLAGS);
object->errorSystem->ReportError(object->windowManager, WOS_NO_STATUS,

"The bignum must be less than %s.", bignumString);
}

// Return error status,
if (valid == NMI_OK)

return (0) ;
else

return (-1);

void ExampleFunctionl (UI_WINDOW_MANAGF.R *wi ndowMar.ager) {
ZIL_BIGNUM valuel, value2;
UIW_WINDOW *window = UIW_WINDOW::Generic (0, 0, 45, 8, "Bignum Window");
*window

+ new UIW_PROMPT(2, 1, "Initial value:")
+ new UIW_BIGNUM(12, 1, 20, &value1, NULL, NMF_NO_FLAGS,

WOF_BORDER | WOF_AUTO_CLEAR, BignumUserFunction)

24 OpenZinc Application Framework—Programmer's Reference Volume 2

+ new UIW_PROMPT(2, 3, "Ending value:")
+ new UIW_BIGNUM(12, 3, 20, &value2, NULL, NMF_NO_FLAGS,

WOF_BORDER | WOF_AUTO_CLEAR, BignumUserFunction);
*windowManager + window;

}

UIW_BIGNUM::DataSet

Syntax

#include <ui_win.hpp>

void DataSet(ZIL_BIGNUM *value);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function assigns a new value to the UIW_BIGNUM object and redisplays the field.
If no value is passed in (i.e., value is NULL), the field will be redrawn.

• valuein is a pointer to the new value. If the WOF_NO_ALLOCATE_DATA flag is
set, this argument must be a ZIL_BIGNUM, allocated by the programmer, that is not
destroyed until the UIW_BIGNUM class object is destroyed. Otherwise, the
information associated with this argument is copied by the UIW_BIGNUM class
object. Care should be taken to only reset a value that is the same type as the
original value. If this argument is NULL, no numeric information is changed, but the
number field is redisplayed.

Example
•tinclude <ui_win.hpp>

Examp] eFuncc. i onl (UT_WINDOW_MANAGER *windowManager)
{

// Manually add a number field to the window.
ZIL_BIGNUM value (0) ;
UIW_BIGNUM *numberField;
UIW_WTNDOW *window - new U1W_WIND0W(0, 0, 40, 10);
*window

Chapter 1 - UIW_BIGNUM 25

+ new UIW_BORDER
+ new UIW_TITLE("Sample numbers")
+ new UIW_PROMPT(2, 1, "Standard: ")
+ (numberField = new UIW_BIGNUM(22, 1, 20, &value, "0..10000"));

*windowManager + window;

// Reset the numeric information for the field.
value->Import(100);
numberField->DataSet(&value);

}

UIW_BIGNUM::Event

Syntax
#include <ui_win.hpp>

virtual EVENT_TYPE Event(const UI_EVENT &.event);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function processes run-time messages sent to the bignum object. It is declared
virtual so that any derived bignum class can override its default operation.

• returnValueout indicates how event was processed. If the event is processed
successfully, the function returns the logical type of event that was interpreted from
event. If the event could not be processed, S_UNKNOWN is returned.

• eventin contains a run-time message for the bignum object. The type of operation
performed depends on the interpretation of the event. The following logical events
are processed by Event():

26 OpenZinc Application Framework—Programmer's Reference Volume 2

L_SELECT—Indicates that the object has been selected. The selection may be
the result of a mouse click or a keyboard action.

S_CREATE—Causes the object to create itself. The object will calculate its
position and size and, if necessary, will register itself with the operating system.
This message is sent by the Window Manager when a window is attached to it
to cause the window and all the objects attached to the window to determine
their positions.

S_NON_CURRENT—Indicates that the object has just become non-current.
This message is received when the user moves to another field or window.

All other events are passed by Event() to UIW_STRING::Event() for processing.

UIW_BIGNUM::lnformation

Syntax
#include <ui_win.hpp>

void *Information(ZIL_INFO_REQUEST request, void *data,
ZIL_OBJECTID objectID = ID_DEFAULT);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function allows OpenZinc objects and programmer functions to get or modify specified
information about an object.

• returnValueout is a pointer to the return data that was requested. The type of the
return data depends on the request. If the request did not require the return of
information, this value is NULL.

Chapter 1 - UIW_BIGNUM 27

requestin is a request to get or set information associated with the object. The
following requests (defined in UI_WIN.HPP) are recognized by the bignum:

I_CLEAR_FLAGS—Clears the current flag settings for the object. If this
request is sent, data should be a pointer to a variable of type UIF_FLAGS that
contains the flags to be cleared, and objectID should indicate the type of object
with which the flags are associated. For example, if the programmer wishes to
clear the WOF_FLAGS of an object, objectID should be ID_WINDOW_-
OBJECT. If the NMF_FLAGS are to be cleared, objectID should be ID_-
BIGNUM. This allows the object to process the request at the proper level.
This request only clears those flags that are passed in; it does not simply clear
the entire field.

I_DECREMENT_VALUE—Decrements the bignum's value. If this message
is sent, data must be a pointer to an integer. The bignum object's value will be
decremented by the value of data. The bignum will not be modified if the new
value is not within the specified range.

I_GET_FLAGS—Requests the current flag settings for the object. If this
request is sent, data should be a pointer to a variable of type UIF_FLAGS, and
objectID should indicate the type of object with which the flags are associated.
For example, if the programmer wishes to obtain the WOF_FLAGS of an object,
objectID should be ID_WINDOW_OBJECT. If the NMF_FLAGS are desired,
objectID should be ID_BIGNUM. This allows the object to process the request
at the proper level.

I_GET_VALUE—Returns the value associated with the bignum. If this
message is sent, data must be a pointer to a variable of type ZIL_BIGNUM
where the bignum's value will be copied.

I_INCREMENT_VALUE—Increments the bignum's value. If this message is
sent, data must be a pointer to an integer. The bignum object's value will be
incremented by the value of data. The bignum will not be modified if the new
value is not within the specified range.

I_INITIALIZE_CLASS—Causes the object to initialize any basic information
that does not require a knowledge of its parent or sibling objects. This request
is sent from the constructor of the object.

I_SET_FLAGS—Sets the current flag settings for the object. If this request is
sent, data should be a pointer to a variable of type UIF_FLAGS that contains the
flags to be set, and objectID should indicate the type of object with which the

49 OpenZinc Application Framework—Programmer's Reference Volume 2

flags are associated. For example, if the programmer wishes to set the WOF_-
FLAGS of an object, objectID should be ID_WINDOW_OBJECT. If the NMF_-
FLAGS are to be set, objectID should be ID_BIGNUM. This allows the object
to process the request at the proper level. This request only sets those flags that
are passed in; it does not clear any flags that are already set.

I_SET_VALUE—Sets the value associated with the bignum. If this message
is sent, data must be a pointer to a variable of type ZIL_BIGNUM that contains
the bignum's new value.

All other requests are passed by Information() to UIW_STRING::Information()
for processing.

• datain/out is used to provide information to the function or to receive the information
requested, depending on the type of request. In general, this must be space allocated
by the programmer.

• objectIDin is a ZIL_OBJECTID that specifies which type of object the request is
intended for. Because the Information() function is virtual, it is possible for an
object to be able to handle a request at more than one level of its inheritance
hierarchy. objectID removes the ambiguity by specifying which level of an object's
hierarchy should process the request. If no value is provided for objectID, the object
will attempt to interpret the request with the objectID of the actual object type.

UIW_BIGNUM::SetLanguage

Syntax
#include <ui_win.hpp>

void SetLanguage(const ZIL_ICHAR *languageName);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows
• Macintosh • OSF/Motif • Curses

• OS/2
• NEXTSTEP

Chapter 1 - UIW_BIGNUM 29

Remarks
This function sets the language to be used by the object. The string translations for the
object will be loaded and the object's myLanguage member will be updated to point to
the new ZIL_LANGUAGE object. By default, the object uses the language identified in
the LANG_DEF.CPP file, which compiles into the library. (If a different default
language is desired, simply copy a LANG_<ISO>.CPP file from the OpenZinc\SOURCE\-
INTL directory to the \OpenZinc\SOURCE directory, and rename it to LANG_DEF.CPP
before compiling the library.) The language translations are loaded from the I18N.DAT
file, so it must be shipped with your application.

• languageNamein is the two-letter ISO language code identifying which language the
object should use.

UIW_BIGNUM::Validate

Syntax
#include <ui_win.hpp>

virtual int Validate(int processError = TRUE);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function is used to validate objects. When an object receives the S_CURRENT or
S_NON_CURRENT messages, it calls Validate() to check if the value entered is valid.
However, if a user function is associated with the object, Validate() must be called
explicitly from the user function if range checking is desired. The value is invalid if it
is not within the absolute range of the object or if it is not within a range specified by the
range member variable.

• returnValueout indicates the result of the validation. The possible values for
returnValue are:

30 OpenZinc Application Framework—Programmer's Reference Volume 2

NMI_GREATER_THAN_RANGE—The number entered was greater than the
maximum value of a negatively open-ended range.

NMI_INVALID—The number was entered in an incorrect format.

NMI_LESS_THAN_RANGE—The number entered was less than the minimum
value of a positively open-ended range.

NMI_OK—The number was entered in a correct format and within the valid
ranges.

NMI_OUT_OF_RANGE—The number was not within the valid range for
numbers or was not within the specified range.

• processErrorin determines whether Validate() should call UI_ERROR_SYSTEM::-
ReportError() if an error occurs. If processError is TRUE, ReportError() is
called. Otherwise, the error system is not called.

Example
#include <ui_win.hpp>

EVENT_TYPE BignumUserFunction(UI_WINDOW_OBJECT *object, UI_EVENT &,
EVENT_TYPE ccode)

{
if (ccode != S_NON_CURRENT)

return (ccode);
// Do specific validation.
ZIL_BIGNUM *bignum = ((UIW_BIGNUM *)object)->DataGet();

// Call the default Validate function to check for valid bignum.
int valid = object->Validate(TRUE);

// Call error system if the bignum is larger than maximum value,
extern ZIL_BIGNUM _maxValue;
if (valid == NMI_OK && *bignum < _maxValue) {

valid = NMI_OUT_OF_RANGE;
char bignumString[64];
_maxValue.Export(bignumString, 64, NMF_NO_FLAGS);
object->errorSystem->ReportError(object->windowManager, WOS_NO_STATUS,

"The bignum must be less than %s.", bignumString);
}
// Return error status,
if (valid == NMI_OK)

return (0) ;
else

return (-1);
}

void ExampleFunctionl(UI_WINDOW_MANAGER *windowManager)
{

UIW_WINDOW *window = UIW_WINDOW::Generic(0, 0, 45, 8, "National Debt");
*window

Chapter 1 - UIW_BIGNUM 31

+ new UIW_PROMPT(2, 1, "Initial value:")
+ new UIW_BIGNUM(12, 1, 20, &ZIL_BIGNUM(), NULL, NMF_NO_FLAGS,

WOF_BORDER | WOF_AUTO_CLEAR, BignumUserFunction)
+ new UIW_PROMPT(2, 3, "Ending value:")
+ new UIW_BIGNUM(12, 3, 20, &ZIL_BIGNUM(), NULL, NMF_NO_FLAGS,

WOF_BORDER | WOF_AUTO_CLEAR, BignumUserFunction);
*windowManager + window;

}

Storage Members

This section describes those class members that are used for storage purposes.

UIW_BIGNUM::UIW_BIGNUM

Syntax
#include <ui_win.hpp>

UIW_BIGNUM(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object,
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced constructor creates a new UIW_BIGNUM by loading the object from a
data file. Typically, the programmer does not need to use this constructor. If a bignum
is stored in a data file it is usually stored as part of a UIW_WINDOW and will be loaded
when the window is loaded.

• namein is the name of the object to be loaded.

32 OpenZinc Application Framework—Programmer's Reference Volume 2

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT::objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions, and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT::userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

UIW BIGNUM::Load

Syntax
#include <ui_win.hpp>

virtual void Load(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object, UI_ITEM *objectTable,
UI_ITEM *userTable)',

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Chapter 1 - UIW_BIGNUM 33

Remarks
This advanced function is used to load a UIW_BIGNUM from a persistent object data
file. It is called by the persistent constructor and is typically not used by the programmer.

• namein is the name of the object to be loaded.

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT: .objectTable in "Chapter 43—UIJWIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions, and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT:.userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

UIW_BIGNUM::New

Syntax
#include <ui_win.hpp>

static UI_WINDOW_OBJECT *New(const ZIL_ICHAR *name,
ZIL_STORAGE_READ_ONLY *file =

ZIL_NULLP(ZIL_STORAGE_READ_ONLY),
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY),

34 OpenZinc Application Framework—Programmer's Reference Volume 2

UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

Portability
This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics • Windows
• OSF/Motif • Curses

• OS/2
• NEXTSTEP

Remarks
This advanced function is used to load a persistent object from a data file. This function
is a static class member so that its address can be placed in a table used by the library to
load persistent objects from a data file.

NOTE: The application must first create a display if objects are to be loaded from a data

• namein is the name of the object to be loaded.

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT:.objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions, and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT:.userTable in "Chapter 43—UI_WINDOW_-

file.

Chapter 1 - UIW_BIGNUM 35

OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

UIW_BIGNUM::NewFunction

Syntax
#include <ui_win.hpp>

virtual ZIL_NEW_FUNCTION NewFunction(void);

Portability

• OS/2
• NEXTSTEP

Remarks

This virtual function returns a pointer to the object's New() function.

• returnValueout is a pointer to the object's New() function.

UIW_BIGNUM::Store

Syntax
#include <ui_win.hpp>

virtual void Store(const ZIL_ICHAR *name, ZIL_STORAGE *file,
ZIL_STORAGE_OBJECT *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

This function is available on the following environments:

• DOS Text • DOS Graphics • Windows
• Macintosh • OSF/Motif • Curses

36 OpenZinc Application Framework—Programmer's Reference Volume 2

Portability
This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics • Windows
• OSF/Motif • Curses

• OS/2
• NEXTSTEP

Remarks
This advanced function is used to write an object to a data file.

• namein is the name of the object to be stored.

• filein is a pointer to the ZIL_STORAGE where the persistent object will be stored.
For more information on persistent object files, see "Chapter 66—ZIL_STORAGE"
of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT where the persistent object
information will be stored. This must be allocated by the programmer. For more
information on loading persistent objects, see "Chapter 68—ZIL_STORAGE_-
OBJECT" of Programmer's Reference Volume 1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT::objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions, and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT::userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

Chapter 1 - UIW_BIGNUM 37

OpenZinc Application Framework—Programmer's Reference Volume 2

CHAPTER 2 - UIW_BORDER

The UIW_BORDER class is used to draw a border around a window in graphics modes
only. The figure below shows a graphic implementation of a window which contains a
UIW_BORDER class object (the outer-most region of the window):

The UIW_BORDER class is declared in UI_WIN.HPP. Its public and protected
members are:

class ZIL_EXPORT_CLASS UIW_BORDFR : public UI_WINDOW_OBJECT
{
public:

static int width;
static ZIL_ICHAR _className[];
BDF_FLAGS bdFlags;
UIW_BORDER(BDF_FLAGS bdFlags = BDF_NO_FLAGS);
virtual ~UIW_BORDER(void);
virtual ZIL_ICHAR *ClassName(void);
int DataGet(void);
void DataSet(int width);
virtual EVENT_TYPE Event(const UI_EVENT &event);
virtual void *Information(ZIL_INFO_REQUEST request, void *data,

ZIL_OBJECTID objectID = ID_DEFAULT);

#if defined(ZIL_LOAD)
virtual ZIL_NEW_FUNCTION NewFunction(void);
static UI_WINDOW_object *New(const ZIL_ICHAR *name,

ZIL_STORAGE_READ_ONLY *file = ZIL_NULLP(ZIL_STORAGE_READ_ONLY),
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY),
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM) ,
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

UIW_BORDER(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_ST'ORAGE_OBJECT_READ_ONLY * object,
UI_ITEM *objectTable = ZIL_NULLP (UI_ITEM) ,
UI_ITEM *userTabie - ZIL_NULLP(UI_ITEM));

Chapter 2 - UIW_BORDER 39

virtual void Load(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object, UI_TTEM *ob]ectTable,
UI_ITEM *userTable);

#endif
if defined(ZIL_STORE)

virtual void Store(const ZIL_ICHAR *name, ZIL_STORAGE *file,
ZIL_STORAGE_OBJECT *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

#endif

protected:
virtual EVENT_TYPE Drawltem(const UI_EVENT &event, EVENT_TYPE ccode);

} ;

General Members

This section describes those members that are used for general purposes.

• width is the default width used when an application is running in graphics mode. The
pre-defined value for width is 4 pixels. A greater value increases the width of the
border displayed on the screen.

• _className contains a string identifying the class. The string is always the same
name as the class, is always in English, and never changes. For example, for the
UIW_BORDER class, _className is "UIW_BORDER."

• bdFlags are flags that define the operation of the UIW_BORDER class. A full
description of the border flags is given in the UIW_BORDER constructor.

UIW_BORDER::UIW_BORDER

Syntax
#include <ui_win.hpp>

UIW_BORDER(BDF_FLAGS bdFlags = BDF_NO_FLAGS);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

40 OpenZinc Application Framework—Programmer's Reference Volume 2

Remarks
This constructor creates a new UIW_BORDER object. The border object always occupies
the outer-most space available in the parent window. To ensure that the border is drawn
around the whole window, it must be created as the window's first object. The following
example shows the correct and incorrect order of border creation:

1) // CORRECT construction order.
UIW_WINDOW *window = new UIW_WINDOW(0, 0, 40, 10);
*window

+ new UIW_BORDER
+ new UIW_MAX1MIZE_BUTT0N
+ new UIW_MINIMIZE_BUTTON
+ new UIW_SYSTEM_BUTTON
+ new UIW_TITLE("Window 1")

2) // INCORRECT construction order.
UIW_WINDOW *window = new UIW_WTNDOW(0, 0, 40, 10);
*window

* new UIW_MAXIMIZE_BUTTON
+ new UIW_MINIMIZE_BUTTON
+ new UIW_SYSTEM_BUTTON
+ new UIW_TITLE("Window 1")
+ new UIW_BORDER

The UIW_BORDER class should not be confused with the WOF_BORDER flag. The
UIW_BORDER class is attached as an object to a parent window and allows sizing with
the mouse (unless the window has the WOAF_NO_SIZE flag set). The UIW_BORDER
class also typically has a more elaborate, 3-dimensional appearance. The WOF_BORDER
flag is not an object and only draws a thin, solid line around the object. If operating in
text mode, neither the UIW_BORDER or the WOF_BORDER may draw, depending on
the text style being used. See "Appendix A—Support Definitions" in this manual for
information on changing DOS graphics mode styles and text mode styles.

NOTE: When a UIW_BORDER is added to a window, it is put into the window's
support list. For more information regarding the support list, see the section on UIW_-
WINDOW:-.support in "Chapter 33—UIW_WINDOW" of this manual.

• bdFlagsin describes how the border should operate. The following flags (declared in
UI_WIN.HPP) control the general presentation and operation of a UIW_BORDER
object:

BDF_NO_FLAGS—Does not associate any special flags with the UIW_-
BORDER class object. This flag is set by default in the constructor.

Chapter 2 - UIW_BORDER 41

Example
#include <ui_win.hpp>

ExampleFunction(UI_WINDOW_MANAGER *windowManager) {
// Create a new window and attach it to the window manager.
UIW_WINDOW *window = new UIW_WINDOW(0, 0, 40, 10);
*window

+ new UIW_BORDER
+ new UIW_MAXIMIZE_BUTTON
+ new UIW_MINIMIZE_BUTTON
+ new UIW_SYSTEM_BUTTON
+ new UIW_TITLE("Window 1");

*windowManager + window;

// The border will automatically be destroyed when the window
// is destroyed.

UIW BORDER::ClassName

Syntax
#include <ui_win.hpp>

virtual ZIL_ICHAR *ClassName(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks

This virtual function returns the object's class name.

• returnValuein is a pointer to _className.

42 OpenZinc Application Framework—Programmer's Reference Volume 2

UIW_BORDER::DataGet

Syntax

#include <ui_win.hpp>

int DataGet(void);

Portability

• OS/2
• NEXTSTEP

Remarks

This function returns the width of the border object.

• returnValueout is the width of the border.

Example
#include <ui_win.hpp>

ExampleFunction(UIW_BORDER *border) {
int width = border->DataGet();

This function is available on the following environments:

• DOS Text • DOS Graphics • Windows
• Macintosh • OSF/Motif • Curses

UIW_BORDER::DataSet

Syntax

#include <ui_win.hpp>

void DataSet(int width);

Chapter 2 - UIW_BORDER 43

Portability
This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics • Windows
• OSF/Motif • Curses

• OS/2
• NEXTSTEP

Remarks
This function sets the width of the border object. Since UIW_BORDER::width is static,
border objects created after a call to DataSet() will all be made with the new border size.

• widthin is the new width of the border.

#include <ui_win.hpp>

ExampleFunctionl(UIW_BORDER *border) {

int newWidth = 6;
border->DataSet(newWidth);

}

UIW_BORDER::Drawltem

Syntax
#include <ui_win.hpp>

virtual EVENT_TYPE DrawItem(const UI_EVENT &event, EVENT_TYPE ccode);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

44 OpenZinc Application Framework—Programmer's Reference Volume 2

Example

Remarks
This virtual advanced function is used to draw the object. If the WOS_OWNERDRAW
status is set for the object, this function will be called when drawing the border. This
allows the programmer to derive a new class from UIW_BORDER and handle the
drawing of the border, if desired.

• returnValueout is a response based on the success of the function call. If the object
is drawn the function returns a non-zero value. If the object is not drawn, 0 is
returned.

• eventin contains the run-time message that caused the object to be redrawn.
event.region contains the region in need of updating. The following logical events
may be sent to the Drawltem() function:

S_CURRENT, S_NON_CURRENT, S_DISPLAY_ACTIVE and S_DIS-
PLAY_INACTIVE—Messages that cause the object to be redrawn.

NOTE: The Drawltem() function draws the border in DOS only. In all other
environments, the operating system is responsible for drawing the border.

• ccodein contains the logical interpretation of event.

UIW_BORDER::Event

Syntax
#include <ui_win.hpp>

virtual EVENT_TYPE Event(const UI_EVENT &.event);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Chapter 2 - UIW_BORDER 45

Remarks
This advanced function processes run-time messages sent to a border object. It is
declared virtual so that any derived border class can override its default operation.

• returnValueout is a response indicating how event was processed. If the event is
processed successfully, the function returns the logical type of event that was
interpreted from the event reference variable. If the event could not be processed,
S_UNKNOWN is returned.

• eventin contains a run-time message for the border object. The type of operation
depends on the interpretation of the event. The following logical events are
processed by Event():

L_BEGIN_SELECT—If the parent window can be sized, this message causes
the border to begin the size operation. When the user releases the mouse button,
the S_CHANGED message is sent to the window, indicating that the window has
changed size. The type of size operation is determined by the overlap of event.-
position within the border.

L_VIEW—Changes the mouse pointer (if any) shown on the screen to reflect
the way in which the window may be sized. For instance, if the user positions
the mouse on the top part of a window's border the mouse pointer is changed to
indicate that vertical sizing can take place.

S_CHANGED—Causes the border to change its size according to the size of its
parent object. This message is received after the window has been sized.

S_CREATE—Causes the border to create itself according to the size of its
parent object. The border always occupies the outermost region of its parent
object. The border is not shown until a display message (S_DISPLAY_-
INACTIVE or S_DISPLAY_ACTIVE) is received by the border object.

S_DISPLAY_ACTIVE and S_DISPLAY_INACTIVE—Cause the border to be
re-drawn if event.region overlaps any part of the border.

All other events are passed by Event() to UI_WINDOW_OBJECT::Event() for
processing.

NOTE: Because most graphical operating systems already process their own events
related to this object, the messages listed above may not be handled in every
environment. Wherever possible, OpenZinc allows the operating system to process its own

46 OpenZinc Application Framework—Programmer's Reference Volume 2

messages so that memory use and speed will be as efficient as possible. In these
situations, the system event can be trapped in a derived Event() function.

UIW_BORDER::lnformation

Syntax
#include <ui_win.hpp>

virtual void *Information(ZIL_INFO_REQUEST request, void *data,
ZIL_OBJECTID objectID = ID_DEFAULT);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function allows OpenZinc objects and programmer functions to get or modify specified
information about an object. It is declared virtual so that any derived border class can
override its default operation. Information() does not process any messages; it simply
passes them to UI_WINDOW_OBJECT::Information().

Storage Members

This section describes those class members that are used for storage purposes.

UIW_BORDER::UIW_BORDER

Syntax
#include <ui_win.hpp>

UIW_BORDER(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,

Chapter 2 - UIW_BORDER 47

ZIL_STORAGE_OBJECT_READ_ONLY *object,
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced constructor creates a new UIW_BORDER by loading the object from a
data file. Typically, the programmer does not need to use this constructor. If a border
is stored in a data file it is usually stored as part of a UIW_WINDOW and will be loaded
when the window is loaded.

• namein is the name of the object to be loaded.

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT::objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT::userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library

48 OpenZinc Application Framework—Programmer's Reference Volume 2

will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

UIW_BORDER::Load

Syntax
#include <ui_win.hpp>

virtual void Load(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced function is used to load a UIW_BORDER from a persistent object data
file. It is called by the persistent constructor and is typically not used by the programmer.

• namein is the name of the object to be loaded.

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablejn is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT:-.objectTable in "Chapter 43—UI_WIN-

Chapter 2 - UIW_BORDER 49

DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT:. userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

UIW_BORDER::New

Syntax
#include <ui_win.hpp>

static UI_WINDOW_OBJECT *New(const ZIL_ICHAR *name,
ZIL_STORAGE_READ_ONLY *file =

ZIL_NULLP(ZIL_STORAGE_READ_ONLY),
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY),
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced function is used to load a persistent object from a data file. This function
is a static class member so that its address can be placed in a table used by the library to
load persistent objects from a data file.

NOTE: The application must first create a display if objects are to be loaded from a data
file.

50 OpenZinc Application Framework—Programmer's Reference Volume 2

• namein is the name of the object to be loaded.

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 7.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT::objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT::userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume |. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

UIW BORDER::NewFunction

Syntax
#include <ui_win.hpp>

virtual ZIL_NEW_FUNCTION NewFunction(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Chapter 2 - UIW_BORDER 51

Remarks
This virtual function returns a pointer to the object's New() function.

• returnValuein is a pointer to the object's New() function.

UIW_BORDER::Store

Syntax
#include <ui_win.hpp>

virtual void Store(const ZIL_ICHAR *name, ZIL_STORAGE *file,
ZIL_STORAGE_OBJECT *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced function is used to write an object to a data file.

• namein is the name of the object to be stored.

• filein is a pointer to the ZIL_STORAGE where the persistent object will be stored.
For more information on persistent object files, see "Chapter 66—ZIL_STORAGE"
of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT where the persistent object
information will be stored. This must be allocated by the programmer. For more
information on loading persistent objects, see "Chapter 68—ZIL_STORAGE_-
OBJECT" of Programmer's Reference Volume 1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see

52 OpenZinc Application Framework—Programmer's Reference Volume 2

the description of UI_WINDOW_OBJECT:.objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT:. userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

Chapter 2 - UIW_BORDER 53

OpenZinc Application Framework—Programmer's Reference Volume 2 54

CHAPTER 3 - UIW_BUTTON

The UIW_BUTTON class is used to initiate an action or to obtain, from the end-user, one
or more selections from a group of related options. The UIW_BUTTON class can create
check boxes, radio buttons and normal push buttons, including default buttons. Push
buttons can be either three-dimensional or flat. Check boxes and radio buttons are
typically used to present a list of options to the end-user and to allow the end-user to
make the desired selections. Normal push buttons are typically used to allow the end-user
to indicate to the program that the action represented by that button should be performed.
A default button is selected if the end-user presses the <ENTER> key anywhere on the
window and the current field cannot process the event. The figure below shows the
graphical implementation of UIW_BUTTON objects:

The UIW_BUTTON class is declared in UI_WIN.HPP. Its public and protected
members are:

class ZIL_EXPORT_CLASS UIW_BUTTON : public UI_WINDOW_OBJECT {
public:

static ZIL_ICHAR _className[];
static int defaultlnitialized;
BTF_FLAGS btFlags;
EVENT_TYPE value;

UIW_BUTTON(int left, int top, int width, ZIL_ICHAR *text,
BTF_FLAGS btFlags = BTF_NO_TOGGLE | BTF_AUTO_SIZE,
WOF_FLAGS woFlags = WOF_JUSTIFY_CENTER,
ZIL_USER_FUNCTION userFunction = ZIL_NULLF(ZIL_USER_FUNCTION),
EVENT_TYPE value = 0, ZIL_ICHAR *bitmapName = ZIL_NULLP(ZIL_ICHAR));

virtual ~UIW_BUTTON(void);
virtual ZIL_ICHAR *ClassName(void);
virtual EVENT_TYPE Event(const UI_EVENT &event);
ZIL_ICHAR *DataGet(int stripText = FALSE);

Chapter 3 - UIW_BUTTON 55

void DataSet(ZIL_ICHAR *text);
virtual void "Information(ZIL_INFO_REQUEST request, void *data,

ZIL_OBJECTID objectID = ID_DEFAULT);
static EVENT_TYPE Message(UI_WINDOW_OBJECT *object, UI_EVENT &event,

EVENT_TYPE ccode);

#if defined(ZIL_LOAD)
virtual ZIL_NEW_FUNCTION NewFunction(void);
static UI_WINDOW_OBJECT *New(const ZIL_ICHAR *name,

ZTI,_STORAGE_READ_ONLY *file = ZIL_NULLP(ZIL_STORAGE_READ_ONLY),
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY),
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM) ,
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

UTW_BUTTON(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY * object,
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *USerTable = ZIL_NULLP(UI_ITEM));

virtual void Load(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

#endif
#if defined (ZIL_STORE)

virtual void Store(const ZIL_ICHAR *name, ZIL_STORAGE *file,
ZIL_STORAGE_OBJECT *object, UI_ITEM *objectTable,
UT_ITEM *userTable);

#endif

void SetDecorations(const ZIL_ICHAR *decorationName);

protected:
BTS_STATUS btStatus;
int depth;
ZIL_ICHAR *text;
ZIL_ICHAR *bitmapName;
int bitmapWidth;
int bitmapHeight;
ZIL_UINT8 *bitmapArray;
ZIL_BITMAP_HANDLE colorBitmap, monoBitmap;

#if defined(ZIL_XT)
Pixmap pixmap;

#endif

const ZIL_DECORATION *myDecorations;

virtual EVENT_TYPE Drawltem(const UI_EVENT &event, EVENT_TYPE ccode);
} ;

General Members

This section describes those members that are used for general purposes.

• _className contains a string identifying the class. The string is always the same
name as the class, is always in English, and never changes. For example, for the
UIW_BUTTON class, _className is "UIW_BUTTON."

• defaultlnitialized indicates if the default decorations (i.e., images) for this object have
been set up. The default decorations are located in the file IMG_DEF.CPP. If

56 OpenZinc Application Framework—Programmer's Reference Volume 2

defaultlnitialized is TRUE, the decorations have been set up. Otherwise they have
not been.

• btFlags are flags that define the operation of the UIW_BUTTON class. A full
description of the button flags is given in the UIW_BUTTON constructor.

• value is an event that will be placed on the event queue if the button has the BTF_-
SEND_MESSAGE flag set and the end-user selects the button, value can also be
used as an identifier to distinguish between several buttons in a common user
function. For example, the programmer could associate the value 0 with an "OK"
button and a value of 1 with a "Cancel" button. This allows the programmer to
define one user function that can determine the action to take based on the button's
value.

• btStatus are status flags that indicate the current status of a button. The following
internal status flags may be set for a UIW_BUTTON object:

BTS_DEFAULT—The button is the default button on the window and appears
with a thick border.

BTS_DEPRESSED—The button is pressed down and appears depressed (where
applicable).

BTS_NO_STATUS—The button is in a normal state.

• depth specifies how three-dimensional the button appears. The greater the value of
depth, the more the button will appear to recess into the screen or pop out of the
screen. The following values are used for depth by default:

0—The button is shown flat, depth will be 0 if the BTF_NO_3D flag is set.

2—The button will have a three-dimensional appearance.

• text is the text that is shown on the button (including all trailing and leading spaces
or check marks, etc.).

• bitmapName is the bitmap's name in a OpenZinc .DAT file or an operating system
resource file. bitmapName is used if the bitmap is to be read from a OpenZinc .DAT file
or an operating system resource file.

• bitmapWidth is the pixel width of the button's bitmap.

Chapter 3 - UIW_BUTTON 57

• bitmapHeight is the pixel height of the button's bitmap.

• bitmapArray is a pointer to an array of ZIL_UINT8 composing the bitmap to be
displayed on the button.

• colorBitmap is an ZIL_BITMAP_HANDLE structure that is specific to the native
environment. colorBitmap is the bitmap image to be displayed on the button.

• monoBitmap is an ZILJ3ITMAPJIANDLE structure that is specific to the native
environment. monoBitmap is a mask that specifies which pixels of the colorBitmap
to draw and which ones to ignore, thus creating a transparent area in the bitmap.

• pixmap is a pointer to the image to be displayed on the button. If the button is to
contain both text and an image, then pixmap will contain the image and the text.
This member is specific to Motif.

• myDecorations is the ZIL_DECORATION object that contains the images for this
object.

UIW_BUTTON::UIW_BUTTON

Syntax
#include <ui_win.hpp>

UIW_BUTTON(int left, int top, int width, ZIL_ICHAR *text,
BTF_FLAGS btFlags = BTF_NO_TOGGLE | BTF_AUTO_SIZE,
WOF_FLAGS woFlags = WOF_JUSTIFY_CENTER,
ZIL_USER_FUNCTION userFunction = ZIL_NULLF(ZIL_USER_FUNCTION),
EVENT_TYPE value = 0, ZIL_ICHAR *bitmapName = ZIL_NULLP(ZIL_ICHAR));

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

58 OpenZinc Application Framework—Programmer's Reference Volume 2

Remarks
This constructor creates a new UIW_BUTTON class object.

• leftin and topin is the starting position of the button field within its parent window.
Typically, these values are in cell coordinates. If the WOF_MINICELL flag is set,
however, these values will be interpreted as minicell values.

• widthin is the width of the button. Typically, this value is in cell coordinates. If the
WOF_MINICELL flag is set, however, this value will be interpreted as a minicell
value. The height of the button is determined automatically by the UIW_BUTTON
object.

• textin is the text that is shown on the button. A hotkey for the button may be
specified by inserting the '&' character into the string before the desired hotkey
character. For example, if the string "Exit" is to be displayed and 'x' is to be the
hotkey, the string should be entered as "E&xit." The '&' will not be displayed, but
will cause the hotkey character to be drawn appropriately. If an '&' is required in
the text that is displayed, place two '&' characters in the string (e.g., "A && B"
will display as "A & B" and the button will not have a hotkey). In those
environments that don't support hotkeys on buttons (e.g., Macintosh, NEXTSTEP)
the '&' character will not be displayed and will have no effect. This string is copied
by the UIW_BUTTON class unless the WOF_NO_ALLOCATE_DATA flag is set.
If this flag is set, text must be space, allocated by the programmer, that is not deleted
until the UIW_BUTTON object has been deleted.

• btFlagsin are flags that define the operation of the UIW_BUTTON class. The
following flags (declared in UI_WIN.HPP) control the general presentation of a
UIW_BUTTON class object:

BTF_AUTO_SIZE—Automatically computes the run-time height of the button.
The button typically will appear slightly taller than a button without this flag set.
In text mode the button may not be affected. This flag is set by default in the
constructor.

BTF_CHECK_BOX—Creates the button as a check box. A check box is
typically used in conjunction with other check boxes to allow the end-user to
select from a set of options. A check box can be toggled on and off and is not
mutually exclusive of other check boxes (i.e., more than one related check box
can be selected at a time). In addition to the text the check box has a small
image that toggles on and off as the button is selected and de-selected. Check
boxes should be added to a UIW_GROUP or other grouping object. The group

Chapter 3 - UIW_BUTTON 59

must have the WNF_SELECT_MULTIPLE flag set to allow the full check box
functionality.

BTF_DEFAULT_BUTTON—Creates the button as the default button on the
window. The default button will be selected if the end-user hits <ENTER>
anywhere on the window and the current object cannot process the event. The
default button will have a dark border to distinguish it as the default button.
Only one button can be the default button on a window. If another button
becomes current, that button will act as if it is the default button until it is no
longer current.

BTF_DOUBLE_CLICK—Causes the button to initiate its action when the end-
user double-clicks on the button. A double-click consists of two down-click, up-
click actions occurring within a period of time specified by UI_WINDOW_-
OBJECT::doubleClickRate. If this flag is set, the user function will be called
with a ccode of L_SELECT on the first click and L_DOUBLE_CLICK on the
second click. This allows different actions to be performed on a single- and
double-click.

BTF_DOWN_CLICK—Causes the button to initiate its action on a button
down-click, rather than on a down-click and release action.

BTF_NO_FLAGS—Does not associate any special flags with the UIW_-
BUTTON class object. In this case the button requires a down and up click
from the mouse to complete an action. The button will also appear
approximately one cell tall and will toggle when selected or de-selected.

BTF_NO_TOGGLE—Does not toggle the button's appearance when it is
selected or de-selected. If this flag is not set, a push button will appear different
if selected. In most environments the button will appear flat if it is selected or
will pop out of the screen if it is not selected. On NEXTSTEP the button will
change color to indicate it is selected. This flag is set by default in the
constructor.

BTF_NO_3D—Causes the button to be displayed without a three-dimensional
appearance.

BTF_RADIO_BUTTON—Creates the button as a radio button. A radio button
is typically used in conjunction with other radio buttons to allow the end-user to
select from a set of options. Radio buttons are mutually exclusive (i.e., only one
radio button in a group of related radio buttons can be selected at a time) so that
when a radio button is toggled on the currently selected radio button is toggled

81 OpenZinc Application Framework—Programmer's Reference Volume 2 60

off. In addition to the text the radio button has a small image that toggles on
and off as the button is selected and de-selected. Radio buttons should be added
to a UIW_GROUP or other grouping object.

BTF_REPEAT—Causes the button's action to be repeatedly performed if the
button is held down. Most operating systems determine the repeat rate, but UI_-
WINDOWJOBJECT::repeatRate will affect how often the action occurs in DOS.

BTF_SEND_MESSAGE—Causes an event to be created and put on the Event
Manager queue when the button is selected. The button's value is placed in the
EVENT_TYPE field of the posted event.

BTF_STATIC_BITMAPARRAY—Causes the bitmap array that is used for the
image on a bitmap button to not be deleted. By default, when a bitmap button
is created, the bitmap is converted to a native storage structure and the bitmap
is deleted. If the bitmap should not be deleted after this conversion is performed
(e.g., if the same bitmap image is to be used for multiple objects), then the
BTF_STATIC_BITMAPARRAY flag should be set.

• woFlagsin are flags (common to all window objects) that determine the general
operation of the button object. The following flags (declared in UI_WIN.HPP)
control the general presentation of, and interaction with, a UIW_BUTTON class
object:

WOF_BORDER—Draws a border around the object. The graphical border's
appearance will depend on the operating system used, and, if in DOS, on the
graphics style being used. In text mode, a border may or may not be drawn,
depending on the text style being used. See "Appendix A—Support
Definitions" in this manual for information on changing DOS graphics mode
styles and text mode styles. This flag is set by default in the constructor.

WOF_JUSTIFY_CENTER—Center-justifies the text within the displayed
button.

WOF_JUSTIFY_RIGHT—Right-justifies the text within the displayed button.

WOF_MINICELL—Causes the position and size values that were passed into
the constructor to be interpreted as minicells. A minicell is a fraction the size
of a normal cell. Greater precision in object placement is achieved by specifying
an object's position in minicell coordinates. A minicell is 1/1 Oth the size of a
normal cell by default.

Chapter 3 - UIW_BUTTON 61

WOF_NO_ALLOCATE_DATA—Prevents the object from allocating a buffer
to store the data. If this flag is set, the programmer is responsible for allocating
the memory for the data. The programmer is also responsible for deallocating
that memory when it is no longer needed.

WOF_NO_FLAGS—Does not associate any special window flags with the
object. Setting this flag left-justifies the data. This flag should not be used in
conjunction with any other WOF flags.

WOF_NON_FIELD_REGION—Causes the object to ignore its position and
size parameters and use the remaining available space in its parent object.

WOF_NON_SELECTABLE—Prevents the object from being selected. If this
flag is set, the user will not be able to position on nor select the button.
Typically, the object will be drawn in such a manner as to appear non-selectable
(e.g., it may appear lighter than a selectable field).

userFunctionin is a programmer defined function that will be called by the library at
certain points in the user's interaction with an object. The user function will be
called by the library when:

1—the user moves onto the field,

2—the <ENTER> key is pressed while the button is current or the button is the
default button, or

3—the mouse is clicked on the object or, if the button has the BTF_-
DOUBLE_CLICK flag set, the mouse is double-clicked on the button, or

4—the user moves to a different field in the window or to a different window.

Because the user function is called at these times, the programmer can do data
validation or any other type of necessary operation. The definition of the
userFunction is as follows:

EVENT_TYPE FunctionName(UI_WINDOW_OBJECT *object,
UI_EVENT &event, EVENT_TYPE ccode);

returnValueout indicates if an error has occurred. returnValue should be 0 if the
no error occurred. Otherwise, the programmer should call the error system with
an appropriate error message and return -1.

83 OpenZinc Application Framework—Programmer's Reference Volume 2 62

objectin is a pointer to the object for which the user function is being called.
This argument must be typecast by the programmer if class-specific members
need to be accessed.

eventin is the run-time message passed to the object.

ccodein is the logical or system code that caused the user function to be called.
This code (declared in UI_EVT.HPP) will be one of the following constant
values:

L_DOUBLE_CLICK—The button has the BTF_DOUBLE_CLICK flag set
and the user double-clicked on the button.

L_SELECT—The <ENTER> key was pressed while the field was current
or the button is the default button, or the button was clicked on with the
mouse.

S_CURRENT—The object just received focus because the user moved to
it from another field or window.

S_NON_CURRENT—The object just lost focus because the user moved to
another field or window.

• valuein is an event that will be placed on the event queue if the button has the
BTF_SEND_MESSAGE flag set and the end-user selects the button, value can also
be used as an identifier to distinguish between several buttons in a common user
function. For example, the programmer could associate the value 0 with an "OK"
button and a value of 1 with a "Cancel" button. This allows the programmer to
define one user function that can determine the action to take based on the button's
value.

• bitmapNamein is the bitmap's name in a OpenZinc .DAT file or an operating system
resource file. bitmapName is used if the bitmap is to be read from a OpenZinc .DAT file
or an operating system resource file.

Example
#include <ui_win.hpp>

const EVENT_TYPE FILE_EXIT = 10001;
const EVENT_TYPE FILE_CANCEL= 10002;
const EVENT_TYPE FILE_HELP = 10003;

static EVENT_TYPE FileControl (UI_WTNDOW_OBJECT *data, U1_EVENT &event,
EVENT_TYPE ccode)

Chapter 3 - UIW_BUTTON 63

{
// Switch on the event value (which is the button value).
UIW_BUTTON *button = (UIW_BUTTON *)data;
switch (button->value) {
case FILE_EXIT:

// Exit the application,
EVENT_TYPE = L_EXIT;

button->eventManager->Put(event);
break;

case FILE_CANCEL:
// Close the file window,
EVENT_TYPE = S_CLOSE;
button->eventManager->Put(event);
break;

case FILE_HELP:
// Get help on the file program.
_helpSystem->DisplayHelp(button->windowManager, HELP_FILE);
break;

}
return ccode;

}
ExampleFunction1(U1_WINDOW_MANAGER *windowManager) {

// Create a window with buttons.
UIW_WINDOW *window = UIW_WINDOW::Generic(0, 0, 50, 10, "Window");
*window

+ new UIW_BUTTON(7, 6, 10, "E~xit", BTF_NO_TOGGLE | BTF_AUTO_SIZE,
WOF_BOHDER | WOF_JUSTIFY_CENTER, FileControl, FILE_EXIT)

+ new UIW_BUTTON(20, 6, 10, ""Cancel", BTF_NO_TOGGLE | BTF_AUTO_SIZE,
WOF_BORDER | WOF_JUSTIFY_CENTER, FileControl, FILE_CANCEL)

+ new UIW_BUTTON(33, 6, 10, ""Help", BTF_NO_TOGGLE | BTF_AUTO_SIZE,
WOF_BORDER | WOF_JUSTIFY_CENTER, FileControl, F1LE_HELP,
"HELP_BITMAP");

*windowManager + window;

// The buttons will automatically be destroyed when the window
// is destroyed.

}

UIW_BUTTON::~UIW_BUTTON

Syntax
#include <ui_win.hpp>

virtual ~UIW_BUTTON(void);

64 OpenZinc Application Framework—Programmer's Reference Volume 2

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This virtual destructor destroys the class information associated with the UIW_BUTTON
object.

UIW_BUTTON::ClassName

Syntax
#include <ui_win.hpp>

virtual ZIL_ICHAR *ClassName(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks

This virtual function returns the object's class name.

• returnValueout is a pointer to _className.

Chapter 3 - UIW_BUTTON 65

UIW BUTTON::DataGet

Syntax
#include <ui_win.hpp>

ZIL_ICHAR *DataGet(int stripText = FALSE);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function gets the text associated with the button object.

• returnValueout is a pointer to the text associated with the button.

• stripTextin indicates if the function should strip out any leading or trailing spaces that
may be in the string or the hotkey character (i.e., '&') if one occurs in the string. If
stripText is TRUE, the text will be stripped of these characters. Otherwise the
characters will be in the returned string. stripText is FALSE by default if no other
value is specified.

Example
#include <ui_win.hpp>

ExampleFunction(UIW_BUTTON *button) {
ZIL_ICHAR *text = button->DataGet();

}

66 OpenZinc Application Framework—Programmer's Reference Volume 2

UIW_B UTTO N::DataSet

Syntax
#include <ui_win.hpp>

void DataSet(ZIL_ICHAR *text);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function assigns new text to the button and redisplays the button. If no text is passed
in (i.e., text is NULL), the button will be redrawn.

• textin is a pointer to the new text information to be displayed on the button. If the
WOF_NO_ALLOCATE_DATA flag is set, text must be a string, allocated by the
programmer, that is not destroyed until the UIW_BUTTON class object is destroyed.
Otherwise, the information associated with this argument is copied by the
UIW_BUTTON class object.

Example
#include <ui_win.hpp>

ExampleFunctionl(UIW_BUTTON *button) {

button->DataSet("&Close");

Chapter 3 - UIW_BUTTON 67

UIW_BUTTON::Drawltem

Syntax
#include <ui_win.hpp>

virtual EVENT_TYPE DrawItem(const UI_EVENT &event, EVENT_TYPE ccode);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This virtual advanced function is used to draw the object. If the WOS_OWNERDRAW
status is set for the object, this function will be called when drawing the button. This
allows the programmer to derive a new class from UIW_BUTTON and handle the
drawing of the button, if desired.

• returnValueout is a response based on the success of the function call. If the object
is drawn the function returns a non-zero value. If the object is not drawn, 0 is
returned.

• eventin contains the run-time message that caused the object to be redrawn.
event, region contains the region in need of updating. The following logical events
may be sent to the Drawltem() function:

S_CURRENT, S_NON_CURRENT, S_DISPLAY_ACTIVE and S_DIS-
PLAY_INACTIVE—Messages that cause the object to be redrawn.

WM_DRAWITEM—A message that causes the object to be redrawn. This
message is specific to Windows and OS/2.

Expose—A message that causes the object to be redrawn. This message is
specific to Motif.

• ccodein contains the logical interpretation of event.

68 OpenZinc Application Framework—Programmer's Reference Volume 2

UIW_BUTTON::Event

Syntax
#include <ui_win.hpp>

virtual EVENT_TYPE Event(const UI_EVENT &event);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function processes run-time messages sent to the button object. It is declared virtual
so that any derived button class can override its default operation.

• returnValueout indicates how event was processed. If the event is processed
successfully, the function returns the logical type of event that was interpreted from
event. If the event could not be processed, S_UNKNOWN is returned.

• eventin contains a run-time message for the button object. The type of operation
performed depends on the interpretation of the event. The following logical events
are processed by Event():

L_BEGIN_SELECT—Indicates that the end-user began the selection of the
object by pressing the mouse button down while on the object. If the BTF_-
DOWN_CLICK flag is set, the user function will be called.

L_CONTINUE_SELECT—Indicates that the end-user previously clicked down
on the object with the mouse and is now continuing to hold the mouse button
down while on the object.

L_DOUBLE_CLICK—Indicates that the object was double-clicked. If the
BTF_DOUBLE_CLICK flag is set, the button's user function will be called.

Chapter 3 - UIW_BUTTON 69

L_END_SELECT—Indicates that the selection process, initiated with the L_-
BEGIN_SELECT message, is complete. For example, the end-user has pressed
and released the mouse button. The user function will be called.

L_SELECT—Indicates that the object has been selected. The selection may be
the result of a mouse click or a keyboard action.

S_CHANGED—Causes the object to recalculate its position and size. When a
window is moved or sized, the objects on the window will need to recalculate
their positions. This message informs an object that it has changed and that it
should update itself.

S_CREATE—Causes the object to create itself. The object will calculate its
position and size and, if necessary, will register itself with the operating system.
This message is sent by the Window Manager when a window is attached to it
to cause the window and all the objects attached to the window to determine
their positions.

S_CURRENT—Causes the object to draw itself to appear current. A button
usually has a focus rectangle around the text or bitmap when it is current or it
may have a thick border. This message is sent by the Window Manager to a
window when it becomes current. The window, in turn, passes this message to
the object on the window that is current.

S_DEINITIALIZE—Informs the object that it is about to be removed from the
application and that it should deinitialize any information. The Window Manager
sends this message to a window when the window is subtracted from the
Window Manager. The window, in turn, relays the message to all objects
attached to it.

S_DISPLAY_ACTIVE—Causes the object to draw itself to appear active. An
active object is one that is on the active (i.e., current) window. Most objects do
not display differently whether they are active or inactive. An active object
should not be confused with a current object. An object is active if it is on the
active window. However, it may not be the current object on the window.

The region that needs to be redisplayed is passed in the UI_REGION portion of
the UI_EVENT structure when this message is sent. The object only needs to
redisplay when the region passed by the event overlaps the region of the object.
This message is sent by a UIW_WINDOW to all the non-current, active objects
attached to it.

91 OpenZinc Application Framework—Programmer's Reference Volume 2

S_DISPLAY_INACTIVE—Causes the object to draw itself to appear inactive.
An inactive object is one that is not on the active (i.e., current) window. Most
objects do not display differently whether they are inactive or active.

The region that needs to be redisplayed is passed in the UI_REGION portion of
the UI_EVENT structure when this message is sent. The object only needs to
redisplay when the region passed with the event overlaps the region of the object.
This message is sent by a UIW WINDOW to all the objects attached to it.

S_HIDE_DEFAULT—Causes the object to draw as a normal button when it has
been drawing as the default button. The default button has a thick border. This
message is sent by another object when the object wishes to appear as the
default.

S_INITIALIZE—Causes the object to initialize any necessary information that
may require a knowledge of its parent or siblings. When a window is added to
the Window Manager, the Window Manager sends this message to cause the
window and all the objects attached to the window to initialize themselves.

S_MOVE—Causes the object to update its location. The distance to move is
contained in the position field of UI_EVENT. For example, an event.position.-
line of -10 and an event.position.column of 15 moves the object 10 lines up and
15 columns to the right.

S_NON_CURRENT—Indicates that the object has just become non-current.
This message is received when the user moves to another field or window.

S_REDISPLAY—Causes the object to redraw.

S_REGISTER_OBJECT—Causes the object to register itself with the operating
system.

S_SHOW_DEFAULT—Causes the object to draw as the default button. The
default button has a thick border. This message is sent when another button has
been current and displaying as the default button but is no longer current.

S_VERIFY_STATUS—Causes the object to correlate its state (i.e., selected or
not selected) with the operating system.

All other events are passed by Event() to UI_WINDOW_OBJECT::Event() for
processing.

Chapter 3 - UIW_BUTTON 71

NOTE: Because most graphical operating systems already process their own events
related to this object, the messages listed above may not be handled in every
environment. Wherever possible, OpenZinc allows the operating system to process its own
messages so that memory use and speed will be as efficient as possible. In these
situations, the system event can be trapped in a derived Event() function.

UIW_BUTTON::Information

Syntax
#include <ui_win.hpp>

virtual void *Information(ZIL_INFO_REQUEST request, void *data,
ZIL_OBJECTID objectID = ID_DEFAULT);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function allows OpenZinc Application Framework objects and programmer functions to
get or modify specified information about an object.

• returnValueout is a pointer to the return data that was requested. The type of the
return data depends on the request. If the request did not require the return of
information, this value is NULL.

• requestin is a request to get or set information associated with the object. The
following requests (defined in UI_WIN.HPP) are recognized by the button:

I_CHANGED_FLAGS—Informs the object that the programmer has changed
some flags associated with the object and that the object should update itself
accordingly. This request should be sent after changing an object's flags,
particularly if the new flag settings will change the visual appearance of the
object. Set data to ZIL_NULLP(void).

72 OpenZinc Application Framework—Programmer's Reference Volume 2

I_CLEAR_FLAGS—Clears the current flag settings for the object. If this
request is sent, data should be a pointer to a variable of type UIF_FLAGS that
contains the flags to be cleared, and objectID should indicate the type of object
with which the flags are associated. For example, if the programmer wishes to
clear the WOF_FLAGS of an object, objectID should be ID_WINDOW_-
OBJECT. If the BTF_FLAGS are to be cleared, objectID should be ID_-
BUTTON. This allows the object to process the request at the proper level.
This request only clears those flags that are passed in; it does not simply clear
the entire field.

I_CHANGED_STATUS—Informs the object that the programmer has changed
some status flags associated with the object and that the object should update
itself accordingly. This request should be sent after changing an object's status
flags, particularly if the new status flag settings will change the visual
appearance of the object. If this request is sent, objectID should indicate the
type of object with which the flags are associated. For example, if the
programmer changes the WOS_STATUS of an object, objectID should be ID_-
WINDOW_OBJECT. If the BTS_STATUS is modified, objectID should be
ID_BUTTON. This allows the object to process the request at the proper level.

I_CLEAR_STATUS—Clears the current status flag settings for the object. If
this request is sent, data should be a pointer to a variable of type UIS_STATUS
that contains the status flags to be cleared, and objectID should indicate the type
of object with which the flags are associated. For example, if the programmer
wishes to clear the WOS_STATUS of an object, objectID should be ID_-
WINDOW_OBJECT. If the BTS_STATUS is to be cleared, objectID should be
ID_BUTTON. This allows the object to process the request at the proper level.
This request only clears those status flags that are passed in; it does not simply
clear the entire field.

I_COPY_TEXT—Copies the text associated with the object into a buffer
provided by the programmer. If this request is sent, data must be the address of
a buffer where the string's text will be copied. This buffer must be large enough
to contain all of the characters associated with the button and the terminating
NULL character.

I_GET_BITMAP_ARRAY—Returns a pointer to the button's bitmap array. If
a bitmap does not exist, NULL is returned. If this message is sent, data must
be a pointer to ZIL_UINT8.

I_GET_BITMAP_HEIGHT—Returns the button's bitmap height. If this
message is sent, data must be a pointer to a variable of type int.

Chapter 3 - UIW_BUTTON 73

I_GET_BITMAP_WIDTH—Returns the button's bitmap width. If this message
is sent, data must be a pointer to a variable of type int.

I_GET_FLAGS—Requests the current flag settings for the object. If this
request is sent, data should be a pointer to a variable of type UIF_FLAGS, and
objectID should indicate the type of object with which the flags are associated.
For example, if the programmer wishes to obtain the WOF_FLAGS of an object,
objectID should be ID_WINDOW_OBJECT. If the BTF_FLAGS are desired,
objectID should be ID_BUTTON. This allows the object to process the request
at the proper level.

I_GET_STATUS—Requests the current status flag settings for the object. If
this request is sent, data should be a pointer to a variable of type UIS_STATUS,
and objectID should indicate the type of object with which the flags are
associated. For example, if the programmer wishes to obtain the WOS_STATUS
of an object, objectID should be ID_WINDOW_OBJECT. If the BTS_STATUS
is desired, objectID should be ID_BUTTON. This allows the object to process
the request at the proper level.

I_GET_TEXT—Returns a pointer to the text associated with the object. If this
request is sent, data should be a doubly-indirected pointer to ZIL_ICHAR. This
request does not copy the text into a new buffer.

I_GET_VALUE—Returns the value associated with the button. If this message
is sent, data must be a pointer to a variable of type EVENT_TYPE where the
button's value will be copied.

I_INITIALIZE_CLASS—Causes the object to initialize any basic information
that does not require a knowledge of its parent or sibling objects. This request
is sent from the constructor of the object.

I_SET_BITMAP_ARRAY—Sets the bitmap array associated with a bitmap
button. If this message is sent, data must be a pointer to an array of
ZIL_UINT8 that contains the button's new bitmap.

I_SET_BITMAP_HEIGHT—Sets the button's bitmap height. If this message
is sent, data must be a pointer to a variable of type int that contains the bitmap's
height.

I_SET_BITMAP_WIDTH—Sets the button's bitmap width. If this message is
sent, data must be a pointer to a variable of type int that contains the bitmap's
width.

95 OpenZinc Application Framework—Programmer's Reference Volume 2 74

I_SET_FLAGS—Sets the current flag settings for the object. If this request is
sent, data should be a pointer to a variable of type UIF_FLAGS that contains the
flags to be set, and objectID should indicate the type of object with which the
flags are associated. For example, if the programmer wishes to set the WOF_-
FLAGS of an object, objectID should be ID_WINDOW_OBJECT. If the BTF_-
FLAGS are to be set, objectID should be ID_BUTTON. This allows the object
to process the request at the proper level. This request only sets those flags that
are passed in; it does not clear any flags that are already set.

I_SET_STATUS—Sets the current status flag settings for the object. If this
request is sent, data should be a pointer to a variable of type UIS_STATUS that
contains the status flags to be set, and objectID should indicate the type of object
with which the flags are associated. For example, if the programmer wishes to
set the WOS_STATUS of an object, objectID should be ID_WINDOW_-
OBJECT. If the BTS_STATUS is to be set, objectID should be ID_BUTTON.
This allows the object to process the request at the proper level. This request
only sets those status flags that are passed in; it does not clear any flags that are
already set.

I_SET_TEXT—Sets the text associated with the object. This request will also
redisplay the object with the new text, data should be a pointer to the new text.

I_SET_VALUE—Sets the value associated with the button. If this message is
sent, data must be a pointer to a variable of type EVENT_TYPE that contains
the button's new value.

All other requests are passed by Information() to UI_WINDOW_OBJECT::-
Information() for processing.

• datain/out is used to provide information to the function or to receive the information
requested, depending on the type of request. In general, this must be space allocated
by the programmer.

• objectIDin is a ZIL_OBJECTID that specifies which type of object the request is
intended for. Because the Information() function is virtual, it is possible for an
object to be able to handle a request at more than one level of its inheritance
hierarchy. objectID removes the ambiguity by specifying which level of an object's
hierarchy should process the request. If no value is provided for objectID, the object
will attempt to interpret the request with the objectID of the actual object type.

Chapter 3 - UIW_BUTTON 75

Example
#include <ui_win.hpp>
#include <string.h>

ExampleFunction() {
ZIL_ICHAR string[30] ;
button->Information(I_COPY_TEXT, string, ID_BUTTON);

buttonl->Informat ion(I_SET_TEXT,
button2->Informat ion(I_SET_TEXT,

}

UIW_BUTTON::Message

Syntax
#include <ui_win.hpp>

EVENT_TYPE Message(UI_WINDOW_OBJECT *object, UI_EVENT &event,
EVENT_TYPE ccode);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function serves as a user function that is called when buttons that have the BTF_-
SEND_MESSAGE flag set are selected. A button whose BTF_SEND_MESSAGE flag
is set will put an event whose type is the button's value on the event queue when selected.
This function should not be used directly by the programmer; rather, it is used by the
library.

• returnValueout is the ccode argument.

"&New", ID_BUTTON);
"E&xit", ID_BUTTON);

76 OpenZinc Application Framework—Programmer's Reference Volume 2

• eventin contains the run-time message that caused the button to be selected.

• ccodein contains the logical interpretation of the event's type.

Example
ExampleFunction() {

// By setting the BTF_SEND_MESSAGE flag, the button's value will
//be placed on the event queue when the button is selected.
UIW_BUTTON = new UIW_BUTTON(1, 5, 20, "E&xit", BTF_AUTO_SIZE |

BTF_NO_TOGGLE | BTF_SEND_MESSAGE, WOF_JUSTIFY_CENTER, NULL, L_EXIT);

}

UIW_BUTTON::SetDecorations

Syntax
#include <ui_win.hpp>

void SetDecorations(const ZIL_ICHAR *decorationName);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function sets the decorations to be used by the object. The images for the object will
be loaded and the object's myDecorations member will be updated to point to the new
ZIL_DECORATION object. By default, the object uses the images identified in the
IMG_DEF.CPP file, which compiles into the library. (If different default images are
desired, simply copy a IMG_<ISO>.CPP file from the OpenZinc\SOURCE\INTL directory
to the \OpenZinc\SOURCE directory, and rename it to IMG_DEF.CPP before compiling the
library.) The images are loaded from the I18N.DAT file, so it must be shipped with your
application.

Chapter 3 - UIW_BUTTON 77

• decorationNamein is the two-letter ISO country code identifying which images the
object should use.

Storage Members

This section describes those class members that are used for storage purposes.

UIW_BUTTON::UIW_BUTTON

Syntax
#include <ui_win.hpp>

UIW_BUTTON(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object,
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows
• Macintosh • OSF/Motif • Curses

• OS/2
• NEXTSTEP

Remarks
This advanced constructor creates a new UIW_BUTTON by loading the object from a
data file. Typically, the programmer does not need to use this constructor. If a button
is stored in a data file it is usually stored as part of a UIW_WINDOW and will be loaded
when the window is loaded.

• namein is the name of the object to be loaded.

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume |.

78 OpenZinc Application Framework—Programmer's Reference Volume 2

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablejn is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT:.objectTable in "Chapter 43—UIJWIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT:.userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

UIW_BUTTON::Load

Syntax
#include <ui_win.hpp>

virtual void Load(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced function is used to load a UIW_BUTTON from a persistent object data

Chapter 3 - UIW_BUTTON 79

file. It is called by the persistent constructor and is typically not used by the programmer.

• namein is the name of the object to be loaded.

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT:.objectTable in "Chapter 43—UIJWIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTableinn is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT:.userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

UIW BUTTON::New

Syntax
#include <ui_win.hpp>

static UI_WINDOW_OBJECT *New(const ZIL_ICHAR *name,
ZIL_STORAGE_READ_ONLY *file =

ZIL_NULLP(ZIL_STORAGE_READ_ONLY),
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY),
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

80 OpenZinc Application Framework—Programmer's Reference Volume 2

Portability
This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics • Windows
• OSF/Motif • Curses

• OS/2
• NEXTSTEP

Remarks
This advanced function is used to load a persistent object from a data file. This function
is a static class member so that its address can be placed in a table used by the library to
load persistent objects from a data file.

NOTE: The application must first create a display if objects are to be loaded from a data

• namein is the name of the object to be loaded.

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT:.objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume |. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT::userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

file.

Chapter 3 - UIW_BUTTON 81

UIW BUTTON::NewFunction

Syntax
#include <ui_win.hpp>

virtual ZIL_NEW_FUNCTION NewFunction(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows
• Macintosh • OSF/Motif • Curses

Remarks

This virtual function returns a pointer to the object's New() function.

• returnValueout is a pointer to the object's New() function.

UIW_B UTTO N::Store

Syntax
#include <ui_win.hpp>

virtual void Store(const ZIL_ICHAR *name, ZIL_STORAGE *file,
ZIL_STORAGE_OBJECT *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows
• Macintosh • OSF/Motif • Curses

• OS/2
• NEXTSTEP

• OS/2
• NEXTSTEP

82 OpenZinc Application Framework—Programmer's Reference Volume 2

Remarks
This advanced function is used to write an object to a data file.

• namein is the name of the object to be stored.

• filein is a pointer to the ZIL_STORAGE where the persistent object will be stored.
For more information on persistent object files, see "Chapter 66—ZIL_STORAGE"
of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT where the persistent object
information will be stored. This must be allocated by the programmer. For more
information on loading persistent objects, see "Chapter 68—ZIL_STORAGE_-
OBJECT" of Programmer's Reference Volume 1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT:.objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT:.-userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

Chapter 3 - UIW_BUTTON 83

OpenZinc Application Framework—Programmer's Reference Volume 2 84

CHAPTER 4 - UIW_COMBO_BOX

The UIW_COMBO_BOX class is used to provide a finite list of options to the end-user
without taking up lots of screen space. The combo box normally only displays the current
selection and a button that is used to view the list of selections. When the button is
selected, a drop-down list containing all the options appears. The end-user can scroll
through the list. If the end-user types some characters, the combo box will move to the
option that most closely matches the characters typed. When one of the options is
selected, it is placed in the default selection field and the drop-down list disappears. The
options can consist of string objects or graphical objects, such as icons and bitmap
buttons. The figure below shows the graphical implementation of a UIW_COMBO_BOX
object:

The UIW_COMBO_BOX class is declared in UI_WIN.HPP. Its public and protected
members are:

class ZIL_EXPORT_CLASS UIW_COMBO_BOX : public UIW_WINDOW
{
public:

static ZIL_ICHAR _className[];
UIW_VT_LIST list;

UIW_COMBO_BOX(int left, int top, int width, int height,
ZIL_COMPARE_FUNCTION compareFunction =

ZIL_NULLF(ZIL_COMPARE_FUNCTION),
WNF_FLAGS wnFlags = WNF_NO_WRAP, WOF_FLAGS woFlags = WOF_NO_FLAGS,
WOAF_FLAGS woAdvancedFlags = WOAF_NO_FLAGS);

UIW_COMBO_BOX(int left, int top, int width, int height,
ZIL_COMPARE_FUNCTTON compareFunction, WOF_FLAGS flagSetting,
UI_ITEM *item);

virtual ~UIW_COMBO_BOX(void);
virtual ZIL_ICHAR *ClassName(void);
virtual void Destroy(void);

Chapter 4 - UIW_COMBO_BOX 85

virtual EVENT_TYPE Event(const UI_EVENT &event);
virtual void *Information(ZIL_INFO_REQUEST request, void *data,

ZIL_OBJECTTD objectID = ID_DEFAULT);
virtual void Sort(void);

if defined (ZIL_LOAD)
virtual ZIL_NEW_FUNCTION NewFur.ction (void) ;
static U1_WIND0W_0BJF,CT *New(const ZIL_ICHAR *name,

ZIL_STORAGE_READ_ONLY *file = ZIL_NULLP (ZIL_STORAGE_READ_ONLY) ,
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY),
UI_ITEM *objectTable = ZIL_NULLP(UI_TTEM),
UI_ITEM *userTable = ZIL_NULLP(UI_1TEM));

UIW_COMBO_BOX(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object,
UI_|'TEM *objectTabl e = ZIL_NULLP(UI_ITEM) ,
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

virtual void Load(const ZIL_ICHAR *name, ZIL_STORAGS_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object, UI_ITEM *objectTable,
U1_ITEM *userTable);

#endif
#if defined(ZIL_STORE)

virtual void Store(const ZIL_ICHAR *name, ZIL_STORAGE *file,
ZIL_STORAGE_OBJECT *object, UI_ITEM *objectTab1e,
U1_ITEM *userTable);

#endif

// List members.
UI_WINDOW_0BJECT *Add(U1_WIND0W_03JECT *object);
int Count(void);
UI_WINDOW_OBJECT *Current(void);
UI_WTNDOW_OBJEC? *First(void) ;
UI_WIND0W_03JECT *Get(int index);
int Index(UI_WINDOW_OBJECT const *element);
UI_WINDOW_0BJECT *Last(void) ;
UI_WINDOW_OBJECT *Subtract(UI_WINDOW_OBJECT *object);
UIW_COMBO_BOX &operator+(UI_WINDOW_OBJECT *object);
UIW_COMBO_BOX &operator-(UI_WINDOW_OBJECT *object);

} ;

General Members

This section describes those members that are used for general purposes.

• _className contains a string identifying the class. The string is always the same
name as the class, is always in English, and never changes. For example, for the
UIW_COMBO_BOX class, _className is "UIW_COMBO_BOX."

• list maintains the list of options displayed by the combo box.

86 OpenZinc Application Framework—Programmer's Reference Volume 2

UIW_COMBO_BOX::UIW_COMBO_BOX

Syntax
#include <ui_win.hpp>

UIW_COMBO_BOX(int left, int top, int width, int height,
ZIL_COMPARE_FUNCTION compare Function =

ZIL_NULLF(ZIL_COMPARE_FUNCTION),
WNF_FLAGS wnFlags = WNF_NO_WRAP,
WOF_FLAGS woFlags = WOF_NO_FLAGS,
WOAF_FLAGS woAdvancedFlags = WOAF_NO_FLAGS)
or

UIW_COMBO_BOX(int left, int top, int width, int height,
ZIL_COMPARE_FUNCTION compare Function, WOF_FLAGS flagSetting,
UI_ITEM *item);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
These overloaded constructors create a new UIW_COMBO_BOX class object.

The first overloaded constructor creates a UIW_COMBO_BOX object.

• left in and topin is the starting position of the combo box. Typically, these values are
in cell coordinates. If the WOF_MINICELL flag is set, however, these values will
be interpreted as minicell values.

• widthin is the width of the combo box. Typically, this value is in cell coordinates.
If the WOF_MINICELL flag is set, however, this value will be interpreted as a
minicell value.

• heightin is the height of the combo box's drop-down list. Typically, this value is in
cell coordinates. If the WOF_MINICELL flag is set, however, this value will be
interpreted as a minicell value.

Chapter 4 - UIW_COMBO_BOX 87

compare Function in is a programmer defined function that will be called by the library
when sorting the list of objects attached to the combo box. compare Function is
called as each individual object is added and if the list is sorted explicitly by calling
the Sort() function. The objects can be sorted based on any key unique to the
object. Pointers to the objects being compared are passed to the compareFunction,
so any information required to do the sorting needs to be associated with the object.
Because the objects can be of any type, even a derived type, the object pointers will
need to be typecast in the compareFunction.

The definition of the compareFunction is as follows:

int FunctionName(void *element1, void *element2);

returnValueout indicates the relative ordering of the two elements. returnValue
should be negative if element 1 should be placed in front of element2, 0 if the two
elements are sorted the same or positive if element 1 should come after element2.

element1in is a pointer to the first element to be compared. This void pointer
must be typecast according to the type of object being sorted.

element2in is a pointer to the second element to be compared. This void pointer
must be typecast according to the type of object being sorted.

wnFlagsin are flags that define the operation of the combo box drop-down list. The
following flags (declared in UI_WIN.HPP) affect the operation of a UIW_COMBO_-
BOX class object's drop-down list:

WNF_AUTO_SELECT—Causes each object in the list to be automatically
selected when it becomes current, thus placing it in the default selection field of
the combo box. This flag is always set on the combo box, whether it is set by
the programmer or not.

WNF_AUTO_SORT—Causes the combo box options to be sorted in
alphabetical order.

WNF_BITMAP_CHILDREN—Indicates that some of the objects contain
bitmaps. Setting this flag will affect the spacing of objects in the drop-down list.
Normally, objects are spaced according to a pre-determined cell height value.
If this flag is set, however, the objects will be spaced according to the actual
height of the objects.

109 OpenZinc Application Framework—Programmer's Reference Volume 2

WNF_CONTINUE_SELECT—Allows the end-user to drag through the drop-
down list options with the mouse button pressed. If this flag is not set, the
highlight on the list options will not follow the dragging mouse. This flag
should usually be set on a combo box.

WNF_NO_FLAGS—Does not associate any special window flags with the
object. This flag should not be used in conjunction with any other WNF_-
FLAGS.

WNF_NO_WRAP—Will not allow arrowing up or down to wrap from the end
of the list to the beginning or vice versa.

• woFlagsin are flags (common to all window objects) that determine the general
operation of the combo box object. The following flags (declared in UI_WIN.HPP)
control the general presentation of, and interaction with, a UIW_COMBO_BOX class
object:

WOF_AUTO_CLEAR—Automatically marks the entire buffer if the end-user
tabs to the field from another object. If the user then enters data (without first
having pressed any movement or editing keys) the entire field will be replaced.

WOF_MINICELL—Causes the position and size values that were passed into
the constructor to be interpreted as minicells. A minicell is a fraction the size
of a normal cell. Greater precision in object placement is achieved by specifying
an object's position in minicell coordinates. A minicell is 1/1 Oth the size of a
normal cell by default.

WOF_NO_FLAGS—Does not associate any special window flags with the
object. This flag should not be used in conjunction with any other WOF flags.

WOF_NON_SELECTABLE—Prevents the object from being selected.
Typically, the object will be drawn in such a manner as to appear non-selectable
(e.g., it may appear lighter than a selectable field).

WOF_VIEW_ONLY—Prevents the object from being edited. However, the
object may become current and the user may scroll through the data, mark it, and
copy it.

• woAdvancedFlagsin are flags (general to all window objects) that determine the
advanced operation of the combo box object.

Chapter 4 - UIW_COMBO_BOX 89

WOAF_NO_FLAGS—Does not associate any special advanced flags with the
window object. This flag should not be used in conjunction with any other
WOAF flags.

WOAF_NON_CURRENT—Prevents the object from becoming current. If this
flag is set, users will not be able to select the combo box from the keyboard.
The combo box may still be selected using the mouse, but it will not become
current.

The second overloaded constructor creates a combo box using a pre-defined item array.
These items are used to create UIW_STRING objects.

• left in and topin is the starting position of the combo box. Typically, these values are
in cell coordinates. If the WOF_MINICELL flag is set, however, these values will
be interpreted as minicell values.

• widthin is the width of the combo box. Typically, this value is in cell coordinates.
If the WOF_MINICELL flag is set, however, this value will be interpreted as a
minicell value.

• heightin is the height of the combo box's drop-down list. Typically, this value is in
cell coordinates. If the WOF_MINICELL flag is set, however, this value will be
interpreted as a minicell value.

• compare Functionin is a programmer defined function that will be called by the library
when sorting the list of objects attached to the combo box. For more details, see the
description of compareFunction with the first constructor.

• flagSettingin is a value that is checked against each UI_ITEM's value field. If the
item's value field is the same as flagSetting, that item is marked as the selected
option in the combo box.

• itemin is an array of UI_ITEM structures that are used to construct a set of string
items within the combo box. For more information regarding the use of the
UI_ITEM structure, see "Chapter 18—UI_ITEM" in Programmer's Reference
Volume 1.

Example
#include <ui_win.hpp>

void ExampleFunction (UI_WINDOW_MANAGER *windowManager) {
UIW_WTNDOW *window = U1W_WIND0W::Generic(0, C, 45, 8, "Window");

90 OpenZinc Application Framework—Programmer's Reference Volume 2

UIW_COMBO_BOX::~UIW_COMBO_BOX

Syntax
#include <ui_win.hpp>

virtual ~UIW_COMBO_BOX(void);

Portability
This function is available on the following environments:

Remarks
This virtual destructor destroys the class information associated with the UIW_COMBO_-
BOX object. All objects attached to the combo box will also be destroyed.

UIW_COMBO_BOX::Add
UIW_COMBO_BOX::operator +

Syntax
#include <ui_win.hpp>

UI_WINDOW_OBJECT *Add(UI_WINDOW_OBJECT *object);

Chapter 4 - UIW_COMBO_BOX 91

*window
+ new UIW_PROMPT(2, 1, "Combo box:")
+ &(* new UIW_COMBO_BOX(20, 1, 17, 6)

+ new UIW_SCROLL_BAR(0, 0, 0, 0, SBF_VERTICAL)
+ new UIW_STRING(0, 0, 15, "Combo 1")
+ new UIW_STRING(0, 0, 15, "Combo 2")
+ new UIW_STRING(0, 0, 15, "Combo 3")
+ new UIW_STRING(0, 0, 15, "Combo 4")
+ new UIW_STRING(0, 0, 15, "Combo 5")
+ new UIW_STRING(0, 0, 15, "Combo 6")
+ new UIW_STRING(0, 0, 15, "Combo 7")
+ new UIW_STRING(0, 0, 15, "Combo 8")
+ new UIW_STRING(0, 0, 15, "Combo 9")
+ new UIW_STRING(0, 0, 15, "Combo 10"));

*windowManager + window;
}

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

or
UIW_COMBO_BOX &operator + (UI_WINDOW_OBJECT *object);

Portability
This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics • Windows
• OSF/Motif • Curses

• OS/2
• NEXTSTEP

Remarks
These overloaded functions are used to add an object to the combo box. If a compare
function was specified for the combo box, it will be used to insert the object in the proper
location. If no compare function was specified, however, the object will be added to the
end of the list.

The first function adds an object to the UIW_COMBO_BOX.

• returnValueout is a pointer to object if the addition was successful. Otherwise,
returnValue is NULL.

• objectin is a pointer to the object to be added to the combo box.

The second overloaded operator adds an object to the UIW_COMBO_BOX. This
operator overload is equivalent to calling the UIW_COMBO_BOX::Add() function
except that it allows the chaining of object additions to the UIW_COMBO_BOX.

• returnValueout is a pointer to the UIW_COMBO_BOX. This pointer is returned so
that the operator may be used in a statement containing other operations.

• objectin is a pointer to the object that is to be added to the combo box.

UIW COMBO BOX::ClassName

Syntax
#include <ui_win.hpp>

virtual ZIL_ICHAR *ClassName(void);

92 OpenZinc Application Framework—Programmer's Reference Volume 2

Portability
This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics • Windows
• OSF/Motif • Curses

• OS/2
• NEXTSTEP

Remarks
This virtual function returns the object's class name.

retumValueout is a pointer to _className. out

UIW_COMBO BOX::Count

Syntax

#include <ui_win.hpp>

int Count(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function returns a count of the number of objects in the combo box list.

returnValueout is the number of objects in the list.

Chapter 4 - UIW_COMBO_BOX 93

UIW COMBO BOX::Current

Syntax

#include <ui_win.hpp>

UI_WINDOW_OBJECT *Current(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function returns a pointer to the current object, if one exists, in the combo box.

• returnValueout is a pointer to the current object in the combo box. If there is no
current object, returnValue is NULL.

UIW_COMBO_BOX::Destroy

Syntax

#include <ui_win.hpp>

virtual void Destroy (void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows
• Macintosh • OSF/Motif • Curses

• OS/2
• NEXTSTEP

94 OpenZinc Application Framework—Programmer's Reference Volume 2

Remarks
This function destroys all the objects attached to the combo box.

UIW_COMBO_BOX::Event

Syntax
#include <ui_win.hpp>

virtual EVENT_TYPE Event(const UI_EVENT &event);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function processes run-time messages sent to the combo box object. It is declared
virtual so that any derived combo box class can override its default operation.

• returnValueout indicates how event was processed. If the event is processed
successfully, the function returns the logical type of event that was interpreted from
event. If the event could not be processed, S_UNKNOWN is returned.

• eventin contains a run-time message for the combo box object. The type of operation
performed depends on the interpretation of the event. The following logical events
are processed by Event():

L_BEGIN_SELECT—Indicates that the end-user began the selection of the
object by pressing the mouse button down while on the object.

L_CANCEL—Causes the drop-down list to be closed.

L_DOWN—Makes the next object in the list the current selection. This
message is interpreted from a keyboard event.

Chapter 4 - UIW_COMBO_BOX 95

L_FIRST—Causes the first object in the combo box list to be made current.

L_LAST—Causes the last object in the combo box list to be made current.

L_NEXT—The combo box object processes this message by suppressing it.
This allows the combo box's parent window to process it. This message is
interpreted from a keyboard event.

L_PGDN—Causes the list to scroll down a page and make the selected object
the new bottom item on the page. This message is interpreted from a keyboard
event.

L_PGUP—Causes the list to scroll up a page and make the selected object the
new top item on the page. This message is interpreted from a keyboard event.

L_PREVIOUS—The combo box object processes this message by suppressing
it. This allows the combo box's parent window to process it. This message is
interpreted from a keyboard event.

L_SELECT—Causes the drop-down list to appear. This message is interpreted
from a keyboard event.

L_UP—Makes the next object in the list the current selection. This message is
interpreted from a keyboard event.

S_ADD_OBJECT—Causes a new object to be added to the combo box.
event.data will point to the new object to be added.

S_CHANGED—Causes the object to recalculate its position and size. When a
window is moved or sized, the objects on the window will need to recalculate
their positions. This message informs an object that it has changed and that it
should update itself.

S_CREATE—Causes the object to create itself. The object will calculate its
position and size and, if necessary, will register itself with the operating system.
This message is sent by the Window Manager when a window is attached to it
to cause the window and all the objects attached to the window to determine
their positions.

S_CURRENT—Causes the object to draw itself to appear current. This message
is sent by the Window Manager to a window when it becomes current. The
window, in turn, passes this message to the object on the window that is current.

117 OpenZinc Application Framework—Programmer's Reference Volume 2

S_DEINITIALIZE—Informs the object that it is about to be removed from the
application and that it should deinitialize any information. The Window Manager
sends this message to a window when the window is subtracted from the
Window Manager. The window, in turn, relays the message to all objects
attached to it.

S_DISPLAY_ACTIVE—Causes the object to draw itself to appear active. An
active object is one that is on the active (i.e., current) window. Most objects do
not display differently whether they are active or inactive. An active object
should not be confused with a current object. An object is active if it is on the
active window. However, it may not be the current object on the window.

The region that needs to be redisplayed is passed in the UI_REGION portion of
the UI_EVENT structure when this message is sent. The object only needs to
redisplay when the region passed by the event overlaps the region of the object.

S_DISPLAY_INACTIVE—Causes the object to draw itself to appear inactive.
An inactive object is one that is not on the active (i.e., current) window. Most
objects do not display differently whether they are inactive or active.

The region that needs to be redisplayed is passed in the UI_REGION portion of
the UI_EVENT structure when this message is sent. The object only needs to
redisplay when the region passed with the event overlaps the region of the object.

S_INITIALIZE—Causes the object to initialize any necessary information that
may require a knowledge of its parent or siblings. When a window is added to
the Window Manager, the Window Manager sends this message to cause the
window and all the objects attached to the window to initialize themselves.

S_NON_CURRENT—Indicates that the object has just become non-current.
This message is received when the user moves to another field or window.

S_REDISPLAY—Causes the object to redraw.

S_REGISTER_OBJECT—Causes the object to register itself with the operating
system.

S_RESET_DISPLAY—Changes the display to a different resolution, event.data
should point to the new display class to be used. If event.data is NULL, then
a text mode display will be created. This event is specific to DOS and must be
placed on the event queue by the programmer. The library will never generate
this event.

- UIW COMBO BOX 97

S_SUBTRACT_OBJECT—Causes an object to be subtracted from the combo
box. event.data will point to the object to be subtracted.

All other events are passed by Event() to UIW_WINDOW::Event() for processing.

NOTE: Because most graphical operating systems already process their own events
related to this object, the messages listed above may not be handled in every
environment. Wherever possible, OpenZinc allows the operating system to process its own
messages so that memory use and speed will be as efficient as possible. In these
situations, the system event can be trapped in a derived Event() function.

UIW_COMBO_BOX::First

Syntax

#include <ui_win.hpp>

UI_WINDOW_OBJECT *First(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function returns a pointer to the first object, if one exists, in the combo box.

• returnValueout is a pointer to the first object in the combo box. If there is no first
object, returnValue is NULL.

98 OpenZinc Application Framework—Programmer's Reference Volume 2

UIW_COMBO_BOX::Get

Syntax
#include <ui_win.hpp>

UI_WINDOW_OBJECT *Get(int index);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This functions us used to get a pointer to a specific object in the combo box.

• returnValueout is a pointer to the object whose index value is index. If no object is
at the index position specified by index, NULL is returned.

• indexin is the index value of the object to be located. The list is zero-based, so the
first object in the list has an index value of 0.

UIW_COMBO_BOX::lndex

Syntax
#include <ui_gen.hpp>

int Index(UI_WINDOW_OBJECT const *element);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows
• Macintosh • OSF/Motif • Curses

• OS/2
• NEXTSTEP

Chapter 4 - UIW_COMBO_BOX 99

Remarks
This function returns the index value of the specified object. If no object matches the
specified object, -1 is returned.

• returnValueout gives the index of the object in the UIW_COMBO_BOX object. List
element indexes are zero based (i.e., the first element in a list has an index value of
0). If element is not found in the UIW_COMBO_BOX object, -1 is returned.

• elementin is a pointer to the object to find.

UIW_COMBO_BOX::Information

Syntax
#include <ui_win.hpp>

virtual void *Information(ZIL_INFO_REQUEST request, void *data,
ZIL_OBJECTID objectID = ID_DEFAULT);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function allows OpenZinc Application Framework objects and programmer functions to
get or modify specified information about an object.

• returnValueout is a pointer to the return data that was requested. The type of the
return data depends on the request. If the request did not require the return of
information, this value is NULL.

• requestin is a request to get or set information associated with the object. The
following requests (defined in UI_WIN.HPP) are recognized by the window:

100 OpenZinc Application Framework—Programmer's Reference Volume 2

I_CHANGED_FLAGS—Informs the object that the programmer has changed
some flags associated with the object and that the object should update itself
accordingly. This request should be sent after changing an object's flags,
particularly if the new flag settings will change the visual appearance of the
object.

I_COPY_TEXT—Copies the text associated with the current selection into a
buffer provided by the programmer. If this request is sent, data must be the
address of a buffer where the selection's text will be copied. This buffer must
be large enough to contain all of the characters associated with the object and the
terminating NULL character.

I_DESTROY_LIST—Destroys all non-support objects attached to the combo
box. This request simply calls Destroy().

I_GET_BITMAP_ARRAY—Returns a pointer to the current selection's bitmap
array. If a bitmap does not exist, NULL is returned. If this message is sent,
data must be a pointer to ZIL_UINT8.

I_GET_CURRENT—Returns a pointer to the current object in the combo-box.

I_GET_FIRST—Returns a pointer to the first object in the combo-box.

I_GET_LAST—Returns a pointer to the last object in the combo-box.

I_GET_NUMBERID_OBJECT—Returns a pointer to an object whose
numberlD matches the value in data, if one exists. If no object attached to the
combo box has a numberlD that matches data, NULL is returned. If this
message is sent, data must be a pointer to a NUMBERID.

I_GET_STRINGID_OBJECT—Returns a pointer to an object whose stringlD
matches the character string in data, if one exists. If no object attached to the
combo box has a stringlD that matches data, NULL is returned. If this message
is sent, data must be a pointer to a string.

I_GET_SUPPORT_CURRENT—Returns a pointer to the current support object
in the combo-box.

I_GET_SUPPORT_FIRST—Returns a pointer to the first support object in the
combo-box.

Chapter 4 - UIW_COMBO_BOX 101

I_GET_SUPPORT_LAST—Returns a pointer to the last support object in the
combo-box.

I_GET_TEXT—Returns a pointer to the text associated with the current
selection. If this request is sent, data should be a doubly-indirected pointer to

ZIL_ICHAR. If data is NULL, the selection's text pointer will be returned as
returnValue. This request does not copy the text into a new buffer.

I_INITIALIZE_CLASS—Causes the object to initialize any basic information
that does not require a knowledge of its parent or sibling objects. This request
is sent from the constructor of the object.

I_RESET_SELECTION—Causes the combo box to update its current selection
field to match the current object in the list.

I_SET_BITMAP_ARRAY—Sets the bitmap array associated with the current
selection. If this message is sent, data must be a pointer to an array of
ZIL_UINT8 that contains the new bitmap.

I_SET_TEXT—Sets the text associated with the current selection. This request
will also redisplay the object with the new text, data should be a pointer to the
new text.

All other requests are passed by Information() to UIW_WINDOW::Information()
for processing.

• datain/out is used to provide information to the function or to receive the information
requested, depending on the type of request. In general, this must be space allocated
by the programmer.

• objectIDin is a ZIL_OBJECTID that specifies which type of object the request is
intended for. Because the Information() function is virtual, it is possible for an
object to be able to handle a request at more than one level of its inheritance
hierarchy. objectID removes the ambiguity by specifying which level of an object's
hierarchy should process the request. If no value is provided for objectID, the object
will attempt to interpret the request with the objectID of the actual object type.

Example
#include <ui_win.hpp>
ExampleFunction() {

UIW_COMBO_BOX *comboBox;

102 OpenZinc Application Framework—Programmer's Reference Volume 2

WNF_FLAGS wnFlags;
comboBox->Information(I_GET_FLAGS, &wnFlags, ID_WINDOW);

}

UIW_COMBO_BOX::Last

Syntax

#include <ui_win.hpp>

UI_WINDOW_OBJECT *Last(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function returns a pointer to the last object, if one exists, in the combo box.

• returnValue out is a pointer to the last object in the combo box. If there is no last
object, returnValue is NULL.

UIW_COMBO_BOX::Sort

Syntax

#include <ui_gen.hpp>

void Sort(void);

Chapter 4 - UIW_COMBO_BOX 103

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function sorts the UIW_COMBO_BOX object using the compareFunction that was
assigned in the constructor. If the list has no compare function, no sort occurs.

UIW_COMBO_BOX::Subtract
UIW_COMBO_BOX::operator -

Syntax
#include <ui_win.hpp>

UI_WINDOW_OBJECT *Subtract(UI_WINDOW_OBJECT *object);
or

UIW_COMBO_BOX &operator - (UI_WINDOW_OBJECT *object);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
These overloaded functions are used to subtract an object from the combo box. These
functions do not delete the objects; they merely remove them from the list. The
programmer is responsible for destroying any objects explicitly subtracted from the combo
box.

The first function subtracts an object from the UIW_COMBO_BOX.

104 OpenZinc Application Framework—Programmer's Reference Volume 2

• returnValueout is a pointer to object if the subtraction was successful. Otherwise,
returnValue is NULL.

• objectin is a pointer to the object to be subtracted from the combo box.

The second overloaded operator subtracts an object from the UIW_COMBO_BOX. This
operator overload is equivalent to calling the UIW_COMBO_BOX::Subtract() function
except that it allows the chaining of object subtractions from the UIW_COMBO_BOX.

• returnValueout is a pointer to the UIW_COMBO_BOX. This pointer is returned so
that the operator may be used in a statement containing other operations.

• objectin is a pointer to the object that is to be subtracted from the combo box.

Storage Members

This section describes those class members that are used for storage purposes.

UIW_COMBO_BOX::UIW_COMBO_BOX

Syntax
#include <ui_win.hpp>

UIW_COMBO_BOX(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file.
ZIL_STORAGE_OBJECT_READ_ONLY *object,
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Chapter 4 - UIW_COMBO_BOX 105

Remarks
This advanced constructor creates a new UIW_COMBO_BOX by loading the object from
a data file. Typically, the programmer does not need to use this constructor. If a combo
box is stored in a data file it is usually stored as part of a UIW_WINDOW and will be
loaded when the window is loaded.

• namein is the name of the object to be loaded.

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT:.objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of Ul_WINDOW_OBJECT::userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

UIW_COMBO_BOX::Load

Syntax
#include <ui_win.hpp>

virtual void Load(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

106 OpenZinc Application Framework—Programmer's Reference Volume 2

Portability
This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics • Windows
• OSF/Motif • Curses

• OS/2
• NEXTSTEP

Remarks
This advanced function is used to load a UIW_COMBO_BOX from a persistent object
data file. It is called by the persistent constructor and is typically not used by the
programmer.

• namein is the name of the object to be loaded.

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT: .objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT::userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

Chapter 4 - UIW_COMBO_BOX 107

UIW_COMBO_BOX::New

Syntax
#include <ui_win.hpp>

static UI_WINDOW_OBJECT *New(const ZIL_ICHAR *name,
ZIL_STORAGE_READ_ONLY *file =

ZIL_NULLP(ZIL_STORAGE_READ_ONLY),
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY),
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced function is used to load a persistent object from a data file. This function
is a static class member so that its address can be placed in a table used by the library to
load persistent objects from a data file.

NOTE: The application must first create a display if objects are to be loaded from a data
file.

• namein is the name of the object to be loaded.

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

108 OpenZinc Application Framework—Programmer's Reference Volume 2

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT:.objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT::userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

UIW_COMBO_BOX::NewFunction

Syntax
#include <ui_win.hpp>

virtual ZIL_NEW_FUNCTION NewFunction(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This virtual function returns a pointer to the object's New() function.

• returnValueout is a pointer to the object's New() function.

Chapter 4 - UIW_COMBO_BOX 109

UIW COMBO_BOX::Store

Syntax
#include <ui_win.hpp>

virtual void Store(const ZIL_ICHAR *name, ZIL_STORAGE *file,
ZIL_STORAGE_OBJECT *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced function is used to write an object to a data file.

• namein is the name of the object to be stored.

• filein is a pointer to the ZIL_STORAGE where the persistent object will be stored.
For more information on persistent object files, see "Chapter 66—ZIL_STORAGE"
of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT where the persistent object
information will be stored. This must be allocated by the programmer. For more
information on loading persistent objects, see "Chapter 68—ZIL_STORAGE_-
OBJECT" of Programmer's Reference Volume 1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT:.objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the

110 OpenZinc Application Framework—Programmer's Reference Volume 2

description of UI_WINDOW_OBJECT::userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

Chapter 4 - UIW_COMBO_BOX 111

OpenZinc Application Framework—Programmer's Reference Volume 2 112

CHAPTER 5 - UIW_DATE

The UIW_DATE class is used to display date information to the screen and to collect
information, in date form, from an end-user. The UIW_DATE class will automatically
format the displayed date. The UIW_DATE class is a high-level object that is used to
interact with the end-user. It makes use of the ZIL_DATE class, which is a low-level
object that handles the details of date data manipulation. See "Chapter 51—ZIL_DATE"
of Programmer's Reference Volume 1 for more information about the ZIL_DATE class.
The figure below shows the graphical implementation of a window with several variations
of the UIW_DATE class object:

The UIW_DATE class is declared in UI_WIN.HPP. Its public and protected members
are:

class ZIL_EXPORT_CLASS UIW_DATE : public UIW_STRING {
public:

static ZIL_ICHAR _className[];
static int defaultlnitialized;
DTF_FLAGS dtFlags;

#if defined(ZIL_3x_COMPAT)
static DTF_FLAGS rangeFlags;

#endif

UIW_DATE(int left, int top, int width, ZIL_DATE *date,
const ZIL_ICHAR *range = ZIL_NULLP(ZIL_ICHAR),
DTF_FLAGS dtFlags = DTF_NO_FLAGS,
WOF_FLAGS woFlags = WOF_BORDER | WOF_AUTO_CLEAR,
ZIL_USER_FUNCTION userFunction = ZIL_NULLF(ZIL_USER_FUNCTION));

virtual ~UIW_DATE(void);
virtual ZIL_ICHAR *ClassName(void);
virtual EVENT_TYPE Event(const UI_EVENT &event);
ZIL_DATE *DataGet(void);
void DataSet(ZIL_DATE *date);

Chapter 5 - UIW_DATE 113

virtual void * Information(ZIL_INFO_REQUEST request, void *data,
ZIL_OBJECTID objectID = ID_DEFAULT);

virtual int Validate(int processError = TRUE);

#if defined(ZIL_LOAD)
virtual ZIL_NEW_FUNCTION NewFunction(void);
static UI_WINDOW_OBJECT *New(const ZIL_ICHAR *name,

ZIL_STORAGE_READ_ONLY *file = ZIL_NULLP(ZIL_STORAGE_READ_ONLY),
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY),
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

UIW_DATE(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object,
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

virtual void Load(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

#endif
#if defined(ZIL_STORE)

virtual void Store(const ZIL_ICHAR *name, ZIL_STORAGE *file,
ZIL_STORAGE_OBJECT *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

#endif

void SetLanguage(const ZIL_ICHAR *languageName);
protected:

ZIL_DATE *date;
ZIL_ICHAR *range;
const ZIL_LANGUAGE *myLanguage;

General Members

This section describes those members that are used for general purposes.

• _className contains a string identifying the class. The string is always the same
name as the class, is always in English, and never changes. For example, for the
UIW_DATE class, _className is "UIW_DATE."

• defaultlnitialized indicates if the default language strings for this object have been set
up. The default strings are located in the file LANG_DEF.CPP. If defaultlnitialized
is TRUE, the strings have been set up. Otherwise they have not been.

• rangeFlags are flags that define how the range values are interpreted. rangeFlags
is set to DTF_US_FORMAT by default.

• dtFlags are flags that define the operation of the UIW_DATE class. A full
description of the date flags is given in the UIW_DATE constructor.

114 OpenZinc Application Framework—Programmer's Reference Volume 2

• date is a pointer to a ZIL_DATE that is used to manage the low-level date
information. If the WOF_NO_ALLOCATE_DATA flag is set, this member will
simply point to the ZIL_DATE value passed in.

• range is a string that specifies the range(s) of acceptable date values, range is a copy
of the range that is passed to the constructor.

• myLanguage is the ZIL_LANGUAGE object that contains the string translations for
this object.

UIW_DATE::UIW_DATE

Syntax
#include <ui_win.hpp>

UIW_DATE(int left, int top, int width, ZIL_DATE *date,
const ZIL_ICHAR *range = ZIL_NULLP(ZIL_ICHAR),
DTF_FLAGS dtFlags = DTF_NO_FLAGS,
WOF_FLAGS wo Flags = W0FJ30RDER | WOF_AUTO_CLEAR,
ZIL_USER_FUNCTION userFunction = ZIL_NULLF(ZIL_USER_FUNCTION));

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This constructor creates a new UIW_DATE class object.

• left i n and topin is the starting position of the date field within its parent window.
Typically, these values are in cell coordinates. If the WOF_MINICELL flag is set,
however, these values will be interpreted as minicell values.

• widthin is the width of the date field. Typically, this value is in cell coordinates. If
the WOF_MINICELL flag is set, however, this value will be interpreted as a minicell
value. The height of the object is determined automatically by the UIW JDATE object.

Chapter 5 - UIW_DATE 115

• datein is a pointer to a ZIL_DATE object. Its value will be used as the initial value.

• rangein is a string that specifies the valid date ranges. A range consists of a
minimum value, a maximum value, and the values in between. The date must be
specified with the format YYYY-MM-DD, where YYYY is the four-digit year, MM
is the month and DD is the day of the month. For example, if a range of "1990-1-
1.. 1990-12-31" is specified, the UIW_DATE class object will only accept those date
values that fall between January 1, 1990 and December 31, 1990, inclusive. Open-
ended ranges can be specified by leaving the minimum or maximum value off. For
example, a range of "1990-1-1.." will allow all dates that are January 1, 1990 or
thereafter. Multiple, disjoint ranges can be specified by separating the individual
ranges with a slash (i.e., '/'). For example, "1990-1-1..1990-1-31/ 1990-3-1.." will
accept all dates during January 1990 and dates of March 1, 1990 and later. If range
is NULL, any date within the absolute range (100-1-1 through 32767-12-31) is
accepted. This string is copied by the UIW_DATE class object to the range member
variable.

• dtFlagsin describes how the date should display and interpret the date information.
The following flags (declared in UI_GEN.HPP) control the general presentation of
a UIW_DATE class object:

DTF_ALPHA_MONTH—Causes the month
name to be spelled-out, as opposed to being
represented numerically.

March 28, 1990
December 4, 1980
January 3, 2 003

DTF_DASH—Separates the date fields with a
dash, regardless of the default country date
separator.

3-28-1990
12-04-1980
1-3-2003

DTF_DAY_OF_WEEK—Causes a spelled-out
day-of-week to be shown in the date.

Monday May 4, 1992
Friday Dec. 5, 1980
Su&day Jan. 4, 2003

DTF_EUROPEAN_FORMAT—Forces the
date to be formatted in the European format (i.e.,
day/month/year), regardless of the default country
information.

28/3/1990
4 December, 1980
3 Jan., 2003

DTF_ASIAN_FORMAT—Forces the date to be
formatted in the Asian format (i.e., year/-
month/day), regardless of the default country
information.

1990/3/28
1980 December 4
2 003 Jan. 3

116 OpenZinc Application Framework—Programmer's Reference Volume 2

DTF_MILITARY_FORMAT—Forces the date
to be formatted in the United States Air Force
format, regardless of the default country
information. The air force format is ordered by
day month year where month is either a 3-letter
abbreviated word and year is a two-digit year
value (if the DTF_SHORT_YEAR or DTF_-
SHORT_MONTH flags are set) or month is
spelled-out and year is a four-digit value. The
air force style is used as the default. However,
in order to accommodate the formats used in
other branches of the military, other date
formatting options (e.g., zero fill, upper case,
etc.) may be used in conjunction with the
standard military format.

(air force style-
default)
4 Jul 91
4 July 1991

DTF_NO_FLAGS—Does not associate any
special flags with the date object. In this case,
the date will be formatted using the default
country information. This flag should not be
used in conjunction with any other DTF flags.

(European format)
4 December 1989
23 June 2000

(Asian format)
1989 December 4
2000 June 23

DTF_SHORT_DAY—Adds an abbreviated day-
of-week to the date.

Wed. March 28, 1990
Thurs. Dec. 4, 1980
Sat. January 3, 2003

DTF_SHORT_MONTH—Adds an abbreviated
month name to the date.

Mar. 28, 1990
Dec. 4, 1980
Jan. 3, 2003

DTF_SHORT_YEAR—Forces the year to be
formatted as a two-digit value.

3/28/90
December 4,
Jan. 3, 89

DTF_SLASH—Separates the date fields with a
slash, regardless of the default country date
separator.

3/28/90
12/04/1900
1/3/2003

DTF_SYSTEM—Uses the system date. 3/28/90
12/04/1980
1/3/2003

DTF_UPPER_CASE—Converts the alphabetic
date characters to upper-case.

MARCH 28, 1990
DEC. 4, 1980
SATURDAY JAN 3, 2003

Chapter 5 - UIW_DATE 117

DTF_US_FORMAT—Forces the date to be
formatted in the U.S. format (i.e.,
month/day/year), regardless of the default country
information.

DTF_ZERO_FILL—Forces the year, month and
day values to be zero filled when their values are
less than 10.

• woFlagsin are flags (common to all window objects) that determine the general
operation of the date object. The following flags (declared in UI_WIN.HPP) affect
the operation of the UIW_DATE class object:

WOF_AUTO_CLEAR—Automatically marks the entire buffer if the end-user
tabs to the field from another object. If the user then enters data (without first
having pressed any movement or editing keys) the entire field will be replaced.
This flag is set by default in the constructor.

WOF_BORDER—Draws a border around the object. The graphical border's
appearance will depend on the operating system used, and, if in DOS, on the
graphics style being used. In text mode, a border may or may not be drawn,
depending on the text style being used. See "Appendix A—Support
Definitions" in this manual for information on changing DOS graphics mode
styles and text mode styles. This flag is set by default in the constructor.

WOF_INVALID—Sets the initial status of the field to be "invalid." Invalid
entries fit in the absolute range determined by the object type but do not fulfill
all the requirements specified by the program. For example, a date may initially
be set to 1-1-80, but the final date, edited by the end-user, must be in the range
"1-1-90..12-31-99." The initial date in this example fits the absolute range
requirements of a UIW_DATE class object but does not fit into the specified
range. By denoting the field as invalid, you force the user to enter an acceptable
value.

WOF_JUSTIFY_CENTER—Center-justifies the data within the displayed field.

WOF_JUSTIFY_RIGHT—Right-justifies the data within the displayed field.

WOF_MINICELL—Causes the position and size values that were passed into
the constructor to be interpreted as minicells. A minicell is a fraction the size
of a normal cell. Greater precision in object placement is achieved by specifying

March 28, 1990
12/4/1980
Jan 3, 2003

March 08, 1990
12/04/1980
01/03/2003

118 OpenZinc Application Framework—Programmer's Reference Volume 2

an object's position in minicell coordinates. A minicell is l/10th the size of a
normal cell by default.

WOF_NO_ALLOCATE_DATA—Prevents the object from allocating a buffer
to store the data. If this flag is set, the programmer is responsible for allocating
the memory for the data. The programmer is also responsible for deallocating
that memory when it is no longer needed.

WOF_NO_FLAGS—Does not associate any special window flags with the
object. Setting this flag left-justifies the data. This flag should not be used in
conjunction with any other WOF flags.

WOF_NON_FIELD_REGION—Causes the object to ignore its position and
size parameters and use the remaining available space in its parent object.

WOF_NON_SELECTABLE—Prevents the object from being selected. If this
flag is set, the user will not be able to position on nor edit the date information.
Typically, the field will be drawn in such a manner as to appear non-selectable
(e.g., it may appear lighter than a selectable field).

WOF_SUPPORT_OBJECT—Causes the object to be placed in the parent
object's support list. The support list is reserved for objects that are not
displayed as part of the user region of the window. Care should be used when
setting this flag on an object that does not use it by default as undesirable effects
may occur. This flag generally should not be used by the programmer.

WOF_UNANSWERED—Sets the initial status of the field to be "unanswered."
An unanswered field is displayed as an empty field.

WOF_VIEW_ONLY—Prevents the object from being edited. However, the
object may become current and the user may scroll through the data, mark it, and
copy it.

• userFunctionin is a programmer defined function that will be called by the library at
certain points in the user's interaction with an object. The user function will be
called by the library when:

1—the user moves onto the field,

2—the <ENTER> key is pressed while the field is current or, if the field is in
a list, the mouse is clicked on it, or

Chapter 5 - UIW_DATE 119

3—the user moves to a different field in the window or to a different window.

Because the user function is called at these times, the programmer can do data
validation or any other type of necessary operation. The definition of the user-
Function is as follows:

EVENT_TYPE FunctionName(UI_WINDOW_OBJECT *object,
UI_EVENT &event, EVENT_TYPE ccode);

returnValueout indicates if an error has occurred. returnValue should be 0 if the
no error occurred. Otherwise, the programmer should call the error system with
an appropriate error message and return -1.

objectin is a pointer to the object for which the user function is being called.
This argument must be typecast by the programmer if class-specific members
need to be accessed.

eventin is the run-time message passed to the object.

ccodein is the logical or system code that caused the user function to be called.
This code (declared in UI_EVT.HPP) will be one of the following constant
values:

L_SELECT—The <ENTER> key was pressed while the field was current
or, if the field is in a list, the mouse was clicked on the field.

S_CURRENT—The object just received focus because the user moved to
it from another field or window. This code is sent before any editing
operations are permitted.

S_NON_CURRENT—The object just lost focus because the user moved to
another field or window.

NOTE: If a user function is associated with the object, Validate() must be called
explicitly from within userFunction if range checking is desired.

Example
#include <ui_win.hpp>

ExampleFunctionl(UI_WINDOW_MANAGER *windowManager) {
ZIL_DATE date; // system date
ZIL_TIME time; // system time

120 OpenZinc Application Framework—Programmer's Reference Volume 2

}

// Create a window with a date and time field.
UIW_WINDOW *window = UIW_WINDOW::Generic(0, 0, 45, 8, NULL, "Window");
*window

+ new UIW_PROMPT(2, 1, "Date..")
+ new UIW_DATE(9, 1, 20, &date, ZIL_NULLP(ZIL_ICHAR),

DTF_AIiPHA_MONTH | DTF_SYSTEM)
+ new UIW_PROMPT(2, 3, "Time..")
+ new UIW_TIME(9, 3, 20, &time, ZIL_NULLP(ZIL_ICHAR), TMF_SECONDS);

// The date object will automatically be destroyed when the window
//is destroyed.

UIW_DATE::~UIW_DATE

Syntax
#include <ui_gen.hpp>

virtual ~UIW_DATE(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This virtual destructor destroys the class information associated with the UIW_DATE
object.

UIW_DATE::ClassName

Syntax
#include <ui_win.hpp>

virtual ZIL_ICHAR *ClassName(void);

Chapter 5 - UIW_DATE 121

Portability
This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics • Windows
• OSF/Motif • Curses

• OS/2
• NEXTSTEP

Remarks
This virtual function returns the object's class name.

• returnValueout is a pointer to _className.

UIW_DATE::DataGet

Syntax

#include <ui_win.hpp>

ZIL_DATE *DataGet(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • Motif • Curses • NEXTSTEP

Remarks
This function gets the current date information associated with the UIW_DATE class
object.

• returnValueout is a pointer to a ZIL_DATE object containing the current date value.

Example
ttinclude <ui_win.hpp>

ExampleFunction(UIW_DATE *dateObject)

122 OpenZinc Application Framework—Programmer's Reference Volume 2

ZIL_DATE *date = dateObject->DataGet();

}

UIW_DATE::DataSet

Syntax
#include <ui_win.hpp>

void DataSet(const ZIL_DATE *date);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • Motif • Curses • NEXTSTEP

Remarks
This function assigns a new value to the UIW_DATE object and redisplays the field. If
no value is passed in (i.e., value is NULL), the field will be redrawn.

• valuein is a pointer to the new date. If the WOF_NO_ALLOCATE_DATA flag is set,
this argument must be a ZIL_DATE, allocated by the programmer, that is not
destroyed until the UIW_DATE class object is destroyed. Otherwise, the information
associated with this argument is copied by the UIW_DATE class object. If this
argument is NULL, no date information is changed, but the date field is redisplayed.

Example
#include <ui_win.hpp>
ExampleFunctionl(UIW_DATE *date)
{

ZIL_DATE datelnfo(92, 10, 19);
date->DataSet(fcdatelnfo) ;

}

Chapter 5 - UIW_DATE 123

UIW_DATE::Event

Syntax
#include <ui_win.hpp>

virtual EVENT_TYPE Event(const UI_EVENT &event);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • Motif • Curses • NEXTSTEP

Remarks
This function processes run-time messages sent to the date object. It is declared virtual
so that any derived date class can override its default operation.

• returnValueout indicates how event was processed. If the event is processed
successfully, the function returns the logical type of event that was interpreted from
event. If the event could not be processed, S_UNKNOWN is returned.

• eventin contains a run-time message for the date object. The type of operation
performed depends on the interpretation of the event. The following logical events
are processed by Event():

L_SELECT—Indicates that the object has been selected. The selection may be
the result of a mouse click or a keyboard action.

S_CREATE—Causes the object to create itself. The object will calculate its
position and size and, if necessary, will register itself with the operating system.
This message is sent by the Window Manager when a window is attached to it
to cause the window and all the objects attached to the window to determine
their positions.

S_NON_CURRENT—Indicates that the object has just become non-current.
This message is received when the user moves to another field or window.

All other events are passed by Event() to UIW_STRING::Event() for processing.

124 OpenZinc Application Framework—Programmer's Reference Volume 2

UIW_DATE::lnformation

Syntax
#include <ui_win.hpp>

void *Information(ZIL_INFO_REQUEST request, void *data,
ZIL_OBJECTID objectID = ID_DEFAULT);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • Motif • Curses • NEXTSTEP

Remarks
This function allows OpenZinc Application Framework objects and programmer functions to
get or modify specified information about an object.

• returnValueout is a pointer to the return data that was requested. The type of the
return data depends on the request. If the request did not require the return of
information, this value is NULL.

• requestin is a request to get or set information associated with the object. The
following requests (defined in UI_WFN.HPP) are recognized by the date object:

I_CHANGED_FLAGS—Informs the object that the programmer has changed
some flags associated with the object and that the object should update itself
accordingly. This request should be sent after changing an object's flags,
particularly if the new flag settings will change the visual appearance of the
object.

I_CLEAR_FLAGS—Clears the current flag settings for the object. If this
request is sent, data should be a pointer to a variable of type UIF_FLAGS that
contains the flags to be cleared, and objectID should indicate the type of object
with which the flags are associated. For example, if the programmer wishes to
clear the WOF_FLAGS of an object, objectID should be ID_WINDOW_-
OBJECT. If the STF_FLAGS are to be cleared, objectID should be ID_-
STRING. This allows the object to process the request at the proper level. This

Chapter 5 - UIW_DATE 125

request only clears those flags that are passed in; it does not simply clear the
entire field.

I_DECREMENT_VALUE—Decrements the date's value. If this message is
sent, data must be a pointer to an integer. The date object's value will be
decremented by the value of data. The date will not be modified if the new
value is not within the specified range.

I_GET_FLAGS—Requests the current flag settings for the object. If this
request is sent, data should be a pointer to a variable of type UIF_FLAGS, and
objectID should indicate the type of object with which the flags are associated.
For example, if the programmer wishes to obtain the WOF_FLAGS of an object,
objectID should be ID_WINDOW_OBJECT. If the STF_FLAGS are desired,
objectID should be ID_STRING. This allows the object to process the request
at the proper level.

I_GET_VALUE—Gets the current value for the object. If this request is sent,
data should be a pointer to ZIL_DATE. If data is NULL returnValue will return
a pointer to ZIL_DATE.

I_INCREMENT_VALUE—Increments the date's value. If this message is sent,
data must be a pointer to an integer. The date object's value will be
incremented by the value of data. The date will not be modified if the new
value is not within the specified range.

I_INITIALIZE_CLASS—Causes the object to initialize any basic information
that does not require a knowledge of its parent or sibling objects. This request
is sent from the constructor of the object.

I_SET_FLAGS—Sets the current flag settings for the object. If this request is
sent, data should be a pointer to a variable of type UIF_FLAGS that contains the
flags to be set, and objectID should indicate the type of object with which the
flags are associated. For example, if the programmer wishes to set the WOF_-
FLAGS of an object, objectID should be ID_WINDOW_OBJECT. If the STF_-
FLAGS are to be set, objectID should be ID_STRING. This allows the object
to process the request at the proper level. This request only sets those flags that
are passed in; it does not clear any flags that are already set.

I_SET_VALUE—Sets the current value for the object. If this request is sent,
data should be a pointer to a ZIL_DATE that contains the value to be set.

126 OpenZinc Application Framework—Programmer's Reference Volume 2

All other requests are passed by Information() to UIW_STRING::Information()
for processing.

• datair/out is used to provide information to the function or to receive the information
requested, depending on the type of request. In general, this must be space allocated
by the programmer.

• objectIDin is a ZIL_OBJECTID that specifies which type of object the request is
intended for. Because the Information() function is virtual, it is possible for an
object to be able to handle a request at more than one level of its inheritance
hierarchy. objectID removes the ambiguity by specifying which level of an object's
hierarchy should process the request. If no value is provided for objectID, the object
will attempt to interpret the request with the objectID of the actual object type.

Example
#include <ui_win.hpp>

ExampleFunction()
{

UIW_DATE *date, *datel, *date2;

ZIL_ICHAR string[30];
date-information(I_COPY_TEXT, &string);

date1->Informat ion(I_SET_TEXT, "12/31/93");
date2->Information(I_SET_TEXT, "10/19/93")j

}

UIW_DATE::SetLanguage

Syntax
#include <ui_win.hpp>

void SetLanguage(const ZIL_ICHAR *languageName);

Chapter 5 - UIW_DATE 127

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function sets the language to be used by the object. The string translations for the
object will be loaded and the object's myLanguage member will be updated to point to
the new ZIL_LANGUAGE object. By default, the object uses the language identified in
the LANG_DEF.CPP file, which compiles into the library. (If a different default
language is desired, simply copy a LANG_<ISO>.CPP file from the OpenZinc\SOURCE\-
INTL directory to the \OpenZinc\SOURCE directory, and rename it to LANG_DEF.CPP
before compiling the library.) The language translations are loaded from the I18N.DAT
file, so it must be shipped with your application.

• languageNamein is the two-letter ISO language code identifying which language the
object should use.

UIW_PATE::Validate

Syntax
#include <ui_win.hpp>

virtual int Validate(int processError = TRUE);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • Motif • Curses • NEXTSTEP

Remarks
This function is used to validate objects. When an object receives the S_CURRENT or
S_NON_CURRENT messages, it calls Validate() to check if the value entered is valid.

128 OpenZinc Application Framework—Programmer's Reference Volume 2

However, if a user function is associated with the object, Validate() must be called
explicitly from the user function if range checking is desired. The value is invalid if it
is not within the absolute range of the object or if it is not within a range specified by the
range member variable.

• returnValueout indicates the result of the validation. The possible values for
returnValue are:

DTI_AMBIGUOUS—The month name was ambiguous (e.g., "01-JU-92").

DTI_GREATER_THAN_RANGE—The date was greater than the maximum
value of a negatively open-ended range.

DTI_INVALID—An invalid date format was encountered (e.g., "31 Jan,
1992").

DTI_INVALID_NAME—Either the month name or the day-of-week name was
invalid (e.g., "Tuesday Jaan 28, 1992" or "Tyesday Jan 28, 1992").

DTI_LESS_THAN_RANGE—The date was less than the minimum value of a
positively open-ended range.

DTI_OK—The date was entered in a correct format and within the valid range.

DTI_OUT_OF_RANGE—The date value was out of range (e.g., "Jan 33,
1992").

DTI_VALUE_MISSING—The required date value was missing (e.g., "5,
1991").

• processErrorin determines whether Validate() should call UI_ERROR_SYSTEM::-
ReportError() if an error occurs. If processError is TRUE, ReportError() is
called. Otherwise, the error system is not called.

Example
#include <ui_win.hpp>

EVENT_TYPE DateUserFunction(UI_WINDOW_OBJECT *object, UI_EVENT &,
EVENT_TYPE ccode)

{
if (ccode != S_NON_CURRENT)

return (ccode);
/ / o specific validation.
ZIL_DATE currentDate;

Chapter 5 - UIW_DATE 129

ZIL_DATE *date = ((UIW_DATE *)object)->DataGet();

// Call the default Validate function to check for valid date,
int valid = object->Validate(TRUE);

// Call error system if the date entered is later than the system date.
if (valid == DTI_OK && currentDate < *date) {

valid = DTI_INVALID;
ZIL_ICHAR dateString[64];
currentDate.Export(dateString, 64, DTF_NO_FLAGS);
object->errorSystem->ReportError(object->windowManager, WOS_NO_STATUS,

"The date must be before %s.", dateString);
}

// Return error status,
if (valid == DTI_OK)

return (0);
else

return (-1);

Storage Members

This section describes those class members that are used for storage purposes.

UIW_DATE::UIW_DATE

Syntax
#include <ui_win.hpp>

UIW_DATE(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object,
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

130 OpenZinc Application Framework—Programmer's Reference Volume 2

Remarks
This advanced constructor creates a new UIW_DATE by loading the object from a data
file. Typically, the programmer does not need to use this constructor. If a date is stored
in a data file it is usually stored as part of a UIW_WINDOW and will be loaded when
the window is loaded.

• namein is the name of the object to be loaded.

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT::objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT::userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

UIW DATE::Load

Syntax
#include <ui_win.hpp>

virtual void Load(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

Chapter 5 - UIW_DATE 131

Portability
This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics • Windows
• OSF/Motif • Curses

• OS/2
• NEXTSTEP

Remarks
This advanced function is used to load a UIW_DATE from a persistent object data file.
It is called by the persistent constructor and is typically not used by the programmer.

• namein is the name of the object to be loaded.

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT:.objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WlNDOW_OBJECT:. userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

132 OpenZinc Application Framework—Programmer's Reference Volume 2

UIW_DATE::New

Syntax
#include <ui_win.hpp>

static UI_WINDOW_OBJECT *New(const ZIL_ICHAR *name,
ZIL_STORAGE_READ_ONLY *file =

ZIL_NULLP(ZIL_STORAGE_READ_ONLY),
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY),
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced function is used to load a persistent object from a data file. This function
is a static class member so that its address can be placed in a table used by the library to
load persistent objects from a data file.

NOTE: The application must first create a display if objects are to be loaded from a data
file.

• namein is the name of the object to be loaded.

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

Chapter 5 - UIW_DATE 133

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT:.objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT::userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

UIW_DATE::Store

Syntax
#include <ui_win.hpp>

virtual void Store(const ZIL_ICHAR *name, ZIL_STORAGE *file,
ZIL_STORAGE_OBJECT *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced function is used to write an object to a data file.

• namein is the name of the object to be stored.

• filein is a pointer to the ZIL_STORAGE where the persistent object will be stored.
For more information on persistent object files, see "Chapter 66—ZIL_STORAGE"
of Programmer's Reference Volume 1.

134 OpenZinc Application Framework—Programmer's Reference Volume 2

• objectin is a pointer to the ZIL_STORAGE_OBJECT where the persistent object
information will be stored. This must be allocated by the programmer. For more
information on loading persistent objects, see "Chapter 68—ZIL_STORAGE_-
OBJECT" of Programmer's Reference Volume 1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT: .objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT::userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

Chapter 5 - UIW_DATE 135

OpenZinc Application Framework—Programmer's Reference Volume 2 136

CHAPTER 6 - UIW_FORMATTED_STRING

The UIW_FORMATTED_STRING class is used to display and collect formatted string
information. Formatting is done on a keystroke-by-keystroke basis. Only those characters
allowed by the format can be typed. The cursor position automatically jumps past non-
editable formatting characters (e.g., parentheses in the area code of a phone number). The
figure below shows the graphical implementation of two UIW_FORMATTED_STRING
class objects:

The UIW_FORMATTED_STRING class is declared in UI_WIN.HPP. Its public and
protected members are:

class ZIL_EXPORT_CLASS UIW_FORMATTED_STRING : public UIW_STRING {
public:

static ZIL_ICHAR _className[];

UIW_FORMATTED_STRING(int left, int top, int width,
ZIL_ICHAR *compressedText, ZIL_ICHAR *editMask,
ZIL__ICHAR *deleteText,
WOF_FLAGS woFlags = WOF_BORDER | WOF_AUTO_CLEAR,
ZIL_USER_FUNCTION userFunction = ZIL_NULLF(ZIL_USER_FUNCTION));

virtual ~UIW_F0RMATTED_STRING(void);
virtual ZIL_ICHAR *ClassName(void);
ZIL_ICHAR *DataGet(int compressedText = FALSE);
void DataSet(ZIL_ICHAR *text);
virtual EVENT_TYPE Event(const UI_EVENT &event);
void Export(ZIL_ICHAR *destination, int expanded);
FMI_RESULT Import(ZIL_ICHAR *source);
virtual void *Information(ZIL_INFO_REQUEST request, void *data,

ZIL_OBJECTID objectID = ID_DEFAULT);

#if defined(ZIL_L0AD)
virtual ZIL_NEW_FUNCTI0N NewFunction(void);
static UI_WINDOW_OBJECT *New (const ZIL_ICHAR *name,

Chapter 6 - UIW_FORMATTED_STRING 137

ZIL_STORAGE_READ_ONLY *file = ZIL_NULLP(ZIL_STORAGE_READ_ONLY) ,
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY),
UI_ITEM * objectTable = ZIL_NULLP (UI_ITEM) ,
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

UIW_FORMATTED_STRING(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object,
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

virtual void Load(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object, UI_ITEM *objectTable(
UI_ITEM *userTable);

#endif
#if defined (ZIL_STORE)

virtual void Store(const ZIL_ICHAR *name, ZIL_STORAGE *file,
ZIL_STORAGE_OBJECT *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

#endif

protected:
ZIL_ICHAR *compressedText;
ZIL_ICHAR *editMask;
ZIL_ICHAR *deleteText;

General Members

This section describes those members that are used for general purposes.

• _className contains a string identifying the class. The string is always the same
name as the class, is always in English, and never changes. For example, for the
UIW_FORMATTED_STRING class, _className is "UIW_FORMATTED_-
STRING."

• compressedText is the raw, unformatted text string.

• editMask defines the format for the string. Each character in editMask denotes the
type of character that can appear in that location. The character can either be editable
or it can be a literal (e.g., the parentheses in the area code of a phone number).

• deleteText contains the characters that will appear if no text has been entered in the
string (i.e., compressedText is empty). This text serves as placeholder text if no data
has been entered or if characters are deleted.

138 OpenZinc Application Framework—Programmer's Reference Volume 2

UIW_FORMATTED_STRING::UIW_FORMATTED_STRING

Syntax
#include <ui_win.hpp>

UIW_FORMATTED_STRING(int left, int top, int width, ZIL_ICHAR *compressedText,
ZIL_ICHAR *editMask, ZIL_ICHAR *deleteText,
WOF_FLAGS woFlags = WOF_BORDER | WOF_AUTO_CLEAR,
ZIL_USER_FUNCTION userFunction = ZIL_NULLF(ZIL_USER_FUNCTION));

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This constructor creates a new UIW_FORMATTED_STRING class object.

• left i n and topin is the starting position of the formatted string field within its parent
window. Typically, these values are in cell coordinates. If the WOF_MINICELL
flag is set, however, these values will be interpreted as minicell values.

• widthin is the width of the formatted string. Typically, this value is in cell
coordinates. If the WOF_MINICELL flag is set, however, this value will be
interpreted as a minicell value. The height of the string is determined automatically
by the UIW_FORMATTED_STRING object.

• compressedTextin is an initial raw text string that will be formatted according to the
editMask and deleteText arguments. This string is copied into a buffer allocated by
the UIW_FORMATTED_STRING object unless the WOF_NO_ALLOCATE_DATA
flag is set, in which case the buffer containing compressedText is used.

• editMaskin defines the format for the string. Each character in editMask denotes the
type of character that can appear in that location. The character can either be editable
or it can be a literal (e.g., the parentheses in the area code of a phone number). This
string is always copied by the UIW_FORMATTED_STRING class object. Valid
characters used to define the edit mask are:

Chapter 6 - UIW_FORMATTED_STRING 139

a—Allows the end-user to enter a space (' ') or any letter (i.e., 'a' through 'z'
or 'A' through 'Z').

A—Same as the 'a' character option except that a lower-case letter is
automatically converted to an upper-case letter.

c—Allows the end-user to enter a space (' '), a number (i.e., '0' through '9') or
any alphabetic character (i.e., 'a' through 'z' or 'A' through 'Z').

C—Same as the 'c' character option except that a lower-case character is
automatically converted to upper-case.

L—Uses this position as a literal place holder. Using this character causes the
formatted string to get the character to be read and displayed from the deleteText.
The end-user cannot position on nor edit this character.

N—Allows the end-user to enter any numeric digit.

x—Allows the end-user to enter any printable character.

X—Same as the 'x' character option except that a lower-case letter is
automatically converted to an upper-case alphanumeric character.

deleteTextin contains the characters that will appear if no text has been entered in the
string (i.e., compressedText is empty). This text serves as placeholder text if no data
has been entered or if characters are deleted. It also specifies the characters to be
used as literal, uneditable characters.

woFlagsin are flags (common to all window objects) that determine the general
operation of the formatted string object. The following flags (declared in
UI_WIN.HPP) control the general presentation of, and interaction with, a UIW_-
FORMATTED_STRING class object:

WOF_AUTO_CLEAR—Automatically marks the entire buffer if the end-user
tabs to the field from another object. If the user then enters data (without first
having pressed any movement or editing keys) the entire field will be replaced.
This flag is set by default in the constructor.

WOF_BORDER—Draws a border around the object. The graphical border's
appearance will depend on the operating system used, and, if in DOS, on the
graphics style being used. In text mode, a border may or may not be drawn,
depending on the text style being used. See "Appendix A—Support

161 OpenZinc Application Framework—Programmer's Reference Volume 2

Definitions" in this manual for information on changing DOS graphics mode
styles and text mode styles. This flag is set by default in the constructor.

WOF_INVALID—Sets the initial status of the field to be "invalid." Invalid
entries fit in the absolute range determined by the object type but do not fulfill
all the requirements specified by the program. By default, all formatted string
information is valid. For example, a formatted string field for a phone number
may initially be set to (...) ...-...., but the final string edited by the end-user must
contain a valid phone number. In this case the initial string information does not
fulfill the program's requirements.

WOF_JUSTIFY_CENTER—Center-justifies the data within the displayed field.

WOF_JUSTIFY_RIGHT—Right-justifies the data within the displayed field.

WOF_MINICELL—Causes the position and size values that were passed into
the constructor to be interpreted as minicells. A minicell is a fraction the size
of a normal cell. Greater precision in object placement is achieved by specifying
an object's position in minicell coordinates. A minicell is l/10th the size of a
normal cell by default.

WOF_NO_ALLOCATE_DATA—Prevents the object from allocating a buffer
to store the data. If this flag is set, the programmer is responsible for allocating
the memory for the data. The programmer is also responsible for deallocating
that memory when it is no longer needed.

WOF_NO_FLAGS—Does not associate any special window flags with the
object. Setting this flag left-justifies the data. This flag should not be used in
conjunction with any other WOF flags.

WOF_NON_FIELD_REGION—Causes the object to ignore its position and
size parameters and use the remaining available space in its parent object.

WOF_NON_SELECTABLE—Prevents the object from being selected. If this
flag is set, the user will not be able to position on nor edit the formatted string
information. Typically, the field will be drawn in such a manner as to appear
non-selectable (e.g., it may appear lighter than a selectable field).

WOF_SUPPORT_OBJECT—Causes the object to be placed in the parent
object's support list. The support list is reserved for objects that are not
displayed as part of the user region of the window. Care should be used when
setting this flag on an object that does not use it by default as undesirable effects
may occur. This flag generally should not be used by the programmer.

Chapter 6 - UIW_FORMATTED_STRING 141

WOF_UNANSWERED—Sets the initial status of the field to be "unanswered."
An unanswered field is displayed as an empty field.

WOF_VIEW_ONLY—Prevents the object from being edited. However, the
object may become current and the user may scroll through the data, mark it, and
copy it.

• userFunctionin is a programmer defined function that will be called by the library at
certain points in the user's interaction with an object. The user function will be
called by the library when:

1—the user moves onto the field,

2—the <ENTER> key is pressed while the field is current or, if the field is in
a list, the mouse is clicked on it, or

3—the user moves to a different field in the window or to a different window.

Because the user function is called at these times, the programmer can do data
validation or any other type of necessary operation. The definition of the
userFunction is as follows:

EVENT_TYPE FunctionName(UI_WINDOW_OBJECT *object,
UI_EVENT &event, EVENT_TYPE ccode);

returnValueout indicates if an error has occurred. returnValue should be 0 if the
no error occurred. Otherwise, the programmer should call the error system with
an appropriate error message and return -1.

objectin is a pointer to the object for which the user function is being called.
This argument must be typecast by the programmer if class-specific members
need to be accessed.

eventin is the run-time message passed to the object.

ccodein is the logical or system code that caused the user function to be called.
This code (declared in UI_EVT.HPP) will be one of the following constant
values:

L_SELECT—The <ENTER> key was pressed while the field was current,
or, if the field is in a list, the mouse was clicked on the field.

142 OpenZinc Application Framework—Programmer's Reference Volume 2

S_CURRENT—The object just received focus because the user moved to
it from another field or window. This code is sent before any editing
operations are permitted.

S_NON_CURRENT—The object just lost focus because the user moved to
another field or window.

Example
#include <ui_win.hpp>

ExampleFunction(UI_WINDOW_MANAGER *windowManager) {
// Add formatted string fields to a window.
UIW_WINDOW *window = new UIW_WINDOW(0, 0, 40, 10);
*window

+ new UIW_BORDER
+ new UIW_TITLE(" Sample strings ")
+ new UIW_PROMPT(2, 1, "Formatted strings..")
+ new UIW_FORMATTED_STRING(22, 1, 41, "8017858900", // phone number

"LNNNLLNNNLNNNN", "(...)..." ")
+ new urw_FORMATTED_STRING(43, 2, 20, "840620000", // zip code

" NNNNNLNNNN" , " - ") ;
*windowManager + window;

// The formatted strings will automatically be destroyed when the window
// is destroyed.

}

UIW_FORMATTED_STRING::~UlW_FORMATTED_STRING

Syntax
#include <ui_win.hpp>

virtual ~UIW_FORMATTED_STRING(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Chapter 6 - UIW_FORMATTED_STRING 143

Remarks
This virtual destructor destroys the class information associated with the UIW_FORMAT-
TED_STRING object.

UIW_FORMATTED_STRING::ClassName

Syntax
#include <ui_win.hpp>

virtual ZIL_ICHAR *ClassName(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh ' • OSF/Motif • Curses • NEXTSTEP

Remarks

This virtual function returns the object's class name.

• returnValueout is a pointer to _className.

UIW_FORMATTED_STRING::DataGet

Syntax
#include <ui_win.hpp>

ZIL_ICHAR *DataGet(int compressedText = FALSE);

144 OpenZinc Application Framework—Programmer's Reference Volume 2

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function gets the current text information associated with the UIW_FORMATTED_-
STRING class object.

• returnValueout is a pointer to the formatted string buffer.

• compressedTextin indicates if the returned text is formatted or not. If compressedText
is TRUE, no formatting will be performed on the returned text. Otherwise the
returned text will be formatted according to the editMask and the deleteText.

Example
#include <ui_win.hpp>

static int CheckAreaCode(UI_WINDOW_OBJECT *data, UI_EVENT &event,
EVENT_TYPE ccode)

{
// Only look for a non-current message.
if (ccode != S_NON_CURRENT)

return (FMI_OK); // Continue with program.
// Make sure the area code is not 000.
UIW_FORMATTED_STRING *StringField = (UIW_FORMATTED_STRING *)data;
ZIL_ICHAR *number = stringField->DataGet(TRUE);
if (number[0] != '0' II number[1] != '0' II number[2] != '0')

return (FMI_OK);
data->errorSystem->ReportError(stringField->windowManager, WOF_UNANSWERED,

"The phone number you entered, %s, does not have a valid area code.",
stringField->DataGet(FALSE));

return (FMI_INVALID);

ExampleFunctionl(UI_WINDOW_MANAGER *windowManager) {
// Create a phone number string field.
UIW_WINDOW *window = new UIW_WINDOW(0, 0, 40, 8);
*window

+ new UIW_BORDER
+ new UIW_TITLE(" Sample strings ")
+ new UIW_PROMPT(2, 1, "Phone number:")
+ new UIW_FORMATTED_STRING(16, 1, 15, "8017858900",

"LNNNLLNNNLNNNN", "(...) ...-...."), WOF_NO_FLAGS, CheckAreaCode);
*windowManager + window;

Chapter 6 - UIW_FORMATTED_STRING 145

UIW_FORMATTED_STRING::DataSet

Syntax
#include <ui_win.hpp>

void DataSet(ZIL_ICHAR *text);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function assigns new text to the UIW_FORMATTED_STRING object and redisplays
the field. If no value is passed in (i.e., text is NULL), the field will be redrawn.

• textin is a pointer to the new text information for the formatted string. This string
must conform to the editMask and deleteText specified for the formatted string. If
the WOF_NO_ALLOCATE_DATA flag is set, this argument must be space, allocated
by the programmer, that is not destroyed until the UIW_FORMATTED_STRING
class object is destroyed. Otherwise, the information associated with this argument
is copied by the UIW_FORMATTED_STRING class object. If this argument is
NULL, no string information is changed, but the formatted string field is redisplayed.

Example
#include <ui_win.hpp>

struct COMPANY_INFO {
ZIL_ICHAR name[64];
ZIL_ICHAR addressl[64];
ZIL_ICHAR address2[64] ;
ZIL_ICHAR representative[64];
ZIL_ICHAR phone[16];

} ;

ExampleFunctionl(UI_WINDOW_MANAGER *windowManager) {
// Manually add a formatted string field to a window.
UIW_STRING *name, *addressl, *address2;
UIW_FORMATTED_STRING *phoneNumber;
UIW_WINDOW *window = new UIW_WINDOW(0, 0, 50, 10);

146 OpenZinc Application Framework—Programmer's Reference Volume 2

*window
+ new UIW_BORDER
+ new UIW_TITLE(" Company Information ")
+ new UIW_PROMPT(2, 1, *name:")
+ (name = new UIW_STRING(11, 1, 30, NULL, 64))
+ new UIW_PROMPT(2, 2, "Address:")
+ (addressl = new UIW_STRING(11, 2, 30, NULL, 64))
+ (address2 = new UIW_STRING(11, 3, 30, NULL, 64))
+ new UIW_PROMPT(2, 5, "Representative:")
+ (representative = new UIW_STRING(18, 5, 30, NULL, 64))
+ new UIW_PROMPT(2, 6, "Phone Number:")
+ (phone = new UIW_FORMATTED_STRING(18, 6, 15, NULL, "LNNNLLNNNLNNNN",

" (. . .) . . . - ")) ;

// Get the company information and set the window information.
COMPANY_INFO company;

name->DataSet(company.name);
addressl->DataSet(company.addressl);
address2->DataSet(company.address2);
representative->DataSet(company.representative);
phone->DataSet(company.phone);
*windowManager + window;

UIW_FORMATTED_STRING::Event

Syntax
#include <ui_win.hpp>

virtual EVENT_TYPE Event(const UI_EVENT &event);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function processes run-time messages sent to the formatted string object. It is
declared virtual so that any derived formatted string class can override its default
operation.

Chapter 6 - UIW_FORMATTED_STRING 147

• returnValueout indicates how event was processed. If the event is processed
successfully, the function returns the logical type of event that was interpreted from
event. If the event could not be processed, S_UNKNOWN is returned.

• eventin contains a run-time message for the formatted string object. The type of
operation performed depends on the interpretation of the event. The following logical
events are processed by Event():

E_KEY—Indicates that a key has been pressed. Places the character in the
formatted string, if it matches the editMask specifications for the current cursor
position. This message is interpreted from a keyboard event.

L_BACKSPACE—Causes the first editable character to the left of the cursor
position to be deleted and moves the cursor to that position. This message is
interpreted from a keyboard event.

L_BOL—Causes the cursor to be moved to the first editable character in the
string. This message is interpreted from a keyboard event.

L_CUT—Causes the highlighted portion of the string to be cut and placed in the
paste buffer. The cut text will include any literal formatting characters. This
message is interpreted from a keyboard event.

L_DELETE—Causes the marked characters, if any, or the character at the
current cursor position to be deleted. If there is no character at the current
cursor position (i.e., there is a character from the deleteText string) the first
editable character to the right of the current cursor position will be deleted. The
cursor's position will not change. This message is interpreted from a keyboard
event.

L_DELETE_EOL—Causes all editable characters from the current cursor
position to the end of the field to be deleted. This message is interpreted from
a keyboard event.

L_END_MARK—Indicates that the end-user has finished marking text in the
string. This message is interpreted from a mouse event.

L_EOL—Causes the cursor to be moved to the last editable character in the
string. This message is interpreted from a keyboard event.

L_LEFT—Causes the cursor to be moved to the next editable character to the
left of the current position. This message is interpreted from a keyboard event.

148 OpenZinc Application Framework—Programmer's Reference Volume 2

L_PASTE—Causes the contents of the paste buffer to be placed in the field at
the current cursor position. The new text will be formatted to fit the editMask
and deleteText specifications. This message is interpreted from a keyboard event.

L_RIGHT—Causes the cursor to be moved to the next editable character to the
right of the current position. This message is interpreted from a keyboard event.

L_SELECT—Indicates that the object has been selected. The selection may be
the result of a mouse click or a keyboard action.

L_WORD_LEFT—Causes the cursor position to be moved to the beginning of
the current word or, if the cursor is at the beginning of the current word, to the
beginning of the next word to the left of the current cursor position. This
message is interpreted from a keyboard event.

L_WORD_RIGHT—Causes the cursor position to be moved to the beginning
of the next word to the right of the current cursor position. This message is
interpreted from a keyboard event.

S_CREATE—Causes the object to create itself. The object will calculate its
position and size and, if necessary, will register itself with the operating system.
This message is sent by the Window Manager when a window is attached to it
to cause the window and all the objects attached to the window to determine
their positions.

S_CURRENT—Causes the object to draw itself to appear current. This message
is sent by the Window Manager to a window when it becomes current. The
window, in turn, passes this message to the object on the window that is current.

S_NON_CURRENT—Indicates that the object has just become non-current.
This message is received when the user moves to another field or window.

All other events are passed by Event() to UIW_STRING::Event() for processing.

UIW_FORMATTED_STRING:;Export

Syntax
#include <ui_win.hpp>

void Export(ZIL_ICHAR *destination, int expanded);

Chapter 6 - UIW_FORMATTED_STRING 149

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function returns the current text from the formatted string. The text, returned by
destination, may either be in expanded or raw form.

• destinationin is a character array, allocated by the programmer, that will receive the
formatted string text, destination must be long enough to contain the string including
the NULL terminator.

• expandedin indicates whether the exported text should be expanded or not. If
expanded is TRUE, the text will be formatted. Otherwise it will be the raw,
unformatted text.

Example
#include <ui_win.hpp>

static int CheckAreaCode(UI_WINDOW_OBJECT *data, UI_EVENT &event,
EVENT_TYPE ccode)

{
// Only look for a non-current message.
if (ccode != S_NON_CURRENT)

return (FMI_OK); // Continue with program.
// Make sure the area code is not 000.
UIW_FORMATTED_STRING *stringField = (UIW_FORMATTED_STRING *)data;
ZIL_ICHAR number[16];
stringField->Export(number, FALSE);
if (number[0] != '0' II number[1] != '0' II number[2] != '0')

return (FMI_OK);
data->errorSystem->ReportError(stringField->windowManager, WOF_NO_FLAGS,

"The phone number you entered, %s, does not have a valid prefix",
stringField->DataGet(FALSE));

return (FMI_INVALID);

ExampleFunctionl(UI_WINDOW_MANAGER *windowManager) {
// Create a phone number string field.
UIW_WINDOW *window = new UIW_WINDOW(0, 0, 40, 8);
*window

+ new UIW_BORDER
+ new UIW_TITLE(" Sample strings ")
+ new UIW_PROMPT(2, 1, "Phone number:")
+ new UIW_FORMATTED_STRING(16, 1, 15, "8017858900",

"LNNNLLNNNLNNNN", "(...) ...-...."), WOF_NO_FLAGS, CheckAreaCode);
*windowManager + window;

150 OpenZinc Application Framework—Programmer's Reference Volume 2

}

UIW_FORMATTED_STRING::lmport

Syntax
#include <ui_win.hpp>

FMI_RESULT Import(ZIL_ICHAR *source);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function sets the string information associated with the UIW_FORMATTED_-
STRING class object.

• returnValueout is the result of the import operation. returnValue can have one of the
following values:

FMI_OK—The import operation was successful.

FMI_INVALID_CHARACTERS—source contained invalid characters.

• sourcein is a pointer to the new string. This string must conform to the editMask and
deleteText specifications. If the WOF_NO_ALLOCATE_DATA flag is set, this
argument must be space, allocated by the programmer, that is not destroyed until the
UIW_FORMATTED_STRING class object is destroyed. Otherwise, the information
associated with this argument is copied by the UIW_FORMATTED_STRING class
object.

Chapter 6 - UIW_FORMATTED_STRING 151

Example
#include <ui_win.hpp>

struct COMPANY_INFO {
ZIL_ICHAR name[64];
ZIL_ICHAR addressl[64];
ZIL_ICHAR address2[64] ;
ZIL_ICHAR representative[64];
ZIL_ICHAR phone[16];

} ;

ExampleFunctionl(UI_WINDOW_MANAGER *windowManager) {
// Manually add a formatted string field to a window.
UIW_STRING *name, *addressl, *address2;
UIW_FORMATTED_STRING *phoneNumber;
UIW_WINDOW *window = new UIW_WINDOW(0, 0, 50, 10);
*window

+ new UIW_BORDER
+ new UIW_TITLE(" Company Information ")
+ new UIW_PROMPT(2, 1, *name:")
+ (name = new UIW_STRING(11, 1, 30, NULL, 64))
+ new UIW_PROMPT(2, 2, "Address:")
+ (addressl = new UIW_STRING(11, 2, 30, NULL, 64))
+ (address2 = new UIW_STRING(11, 3, 30, NULL, 64))
+ new UIW_PROMPT(2, 5, "Representative:")
+ (representative = new UIW_STRING(18, 5, 30, NULL, 64))
+ new UIW_PROMPT(2, 6, "Phone Number:")
+ (phone = new UIW_FORMATTED_STRING(18, 6, 15, NULL, "LNNNLLNNNLNNNN",

"(...) ... ")) ;

// Get the company information and set the window information.
COMPANY_INFO company;

name->Import(company.name);
addressl->Import(company.addressl);
address2->Import(company,address2);
representative->Import(company.representative);
phone->Import(company.phone);
*windowManager + window;

UIW_FORMATTED_STRING::lnformation

Syntax
#include <ui_win.hpp>

virtual void *Information(ZIL_INFO_REQUEST request, void *data,
ZIL_OBJECTID objectID = ID_DEFAULT);

152 OpenZinc Application Framework—Programmer's Reference Volume 2

Portability
This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics • Windows
• OSF/Motif • Curses

• OS/2
• NEXTSTEP

Remarks
This function allows OpenZinc Application Framework objects and programmer functions to
get or modify specified information about an object.

• returnValueout is a pointer to the return data that was requested. The type of the
return data depends on the request. If the request did not require the return of
information, this value is NULL.

• requestin is a request to get or set information associated with the object. The
following requests (defined in UI_WIN.HPP) are recognized by the formatted string

I_CHANGED_FLAGS—Informs the object that the programmer has changed
some flags associated with the object and that the object should update itself
accordingly. This request should be sent after changing an object's flags,
particularly if the new flag settings will change the visual appearance of the
object.

I_INITIALIZE_CLASS—Causes the object to initialize any basic information
that does not require a knowledge of its parent or sibling objects. This request
is sent from the constructor of the object.

I_SET_TEXT—Sets the text associated with the object. This request will also
redisplay the object with the new text, data should be a pointer to the new text.

All other requests are passed by Information() to UIW_STRING::Information()
for processing.

• datain/out is used to provide information to the function or to receive the information
requested, depending on the type of request. In general, this must be space allocated
by the programmer.

• objectIDin is a ZIL_OBJECTID that specifies which type of object the request is
intended for. Because the Information() function is virtual, it is possible for an

object:

Chapter 6 - UIW_FORMATTED_STRING 153

object to be able to handle a request at more than one level of its inheritance
hierarchy. objectID removes the ambiguity by specifying which level of an object's
hierarchy should process the request. If no value is provided for objectID, the object
will attempt to interpret the request with the objectID of the actual object type.

Example
#include <ui_win.hpp>
#include <string.h>

ExampleFunction() {
UIW_FORMATTED_STRING *fString, *fStringl, *fString2;

ZIL_ICHAR string[30];
fString->Information(I_COPY_TEXT, string);

fStringl->Informat ion(I_SET_TEXT, "8017858900");
fString2->Informat ion(I_SET_TEXT, "8017858998");

}

Storage Members

This section describes those class members that are used for storage purposes.

UIW_FORMATTED_STRING::UIW_FORMATTED_STRING

Syntax
#include <ui_win.hpp>

UIW_FORMATTED_STRING(const ZIL_ICHAR *name,
ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object,
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

154 OpenZinc Application Framework—Programmer's Reference Volume 2

Portability
This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics • Windows
• OSF/Motif • Curses

• OS/2
• NEXTSTEP

Remarks
This advanced constructor creates a new UIW_FORMATTED_STRING by loading the
object from a data file. Typically, the programmer does not need to use this constructor.
If a formatted string is stored in a data file it is usually stored as part of a UIW_-
WINDOW and will be loaded when the window is loaded.

• namein is the name of the object to be loaded.

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT::objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT:.userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

Chapter 6 - UIW_FORMATTED_STRING 155

UIW_FORMATTED_STRING::Load

Syntax
#include <ui_win.hpp>

virtual void Load(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced function is used to load a UIW_FORMATTED_STRING from a persistent
object data file. It is called by the persistent constructor and is typically not used by the
programmer.

• namein is the name of the object to be loaded.

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT:. objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

156 OpenZinc Application Framework—Programmer's Reference Volume 2

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT::userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

UIW_FORMATTED_STRING::New

Syntax
#include <ui_win.hpp>

static UI_WINDOW_OBJECT *New(const ZIL_ICHAR *name,
ZIL_STORAGE_READ_ONLY *file =

ZIL_NULLP(ZIL_STORAGE_READ_ONLY),
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY),
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced function is used to load a persistent object from a data file. This function
is a static class member so that its address can be placed in a table used by the library to
load persistent objects from a data file.

NOTE: The application must first create a display if objects are to be loaded from a data
file.

• namein is the name of the object to be loaded.

Chapter 6 - UIW_FORMATTED_STRING 157

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OB,JECT::objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT::userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

UIW_FORMATTED_STRING::NewFunction

Syntax
#include <ui_win.hpp>

virtual ZIL_NEW_FUNCTION NewFunction(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

158 OpenZinc Application Framework—Programmer's Reference Volume 2

Remarks
This virtual function returns a pointer to the object's New() function.

• returnValueout is a pointer to the object's New() function.

UIW_FORMATTED_STRING::Store

Syntax
#include <ui_win.hpp>

virtual void Store(const ZIL_ICHAR *name, ZIL_STORAGE *file,
ZIL_STORAGE_OBJECT *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced function is used to write an object to a data file.

• namein is the name of the object to be stored.

• filein is a pointer to the ZIL_STORAGE where the persistent object will be stored.
For more information on persistent object files, see "Chapter 66—ZIL_STORAGE"
of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT where the persistent object
information will be stored. This must be allocated by the programmer. For more
information on loading persistent objects, see "Chapter 68—ZIL_STORAGE_-
OBJECT" of Programmer's Reference Volume 1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see

Chapter 6 - UIW_FORMATTED_STRING 159

the description of UI_WINDOW_OBJECT:.objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT:. userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

160 OpenZinc Application Framework—Programmer's Reference Volume 2

CHAPTER 7 - UIW_GROUP

The UIW_GROUP class is used to associate related objects with each other, both visually
and logically. For example, a group is typically used to contain radio buttons. Visually,
the end-user can see the available options and which one is selected. Logically, the end-
user is able to select only one option from the group. The group has a title that can be
used to further clarify the relationship of the objects in the group. To visually relate the
objects, the group draws a border (or different colored background in some text modes)
around the entire group. The picture below shows a graphical implementation of UIW_-
GROUP objects:

The UIW_GROUP class is declared in UI_WIN.HPP. Its public and protected members
are:

class ZIL_EXPORT_CLASS UIW_GROUP : public UIW_WINDOW {
public:

static ZIL_ICHAR _className[];
UIW_GR0UP(int left, int top, int width, int height, ZIL_ICHAR *text,

WNF_FLAGS wnFlags = WNF_AUTO_SELECT,
WOF_FLAGS woFlags = WOF_NO_FLAGS);

virtual ~UIW_GROUP(void);
virtual ZIL_ICHAR *ClassName(void);
virtual EVENT_TYPE Event(const UI_EVENT &event);
ZIL_ICHAR *DataGet(void);
void DataSet(ZIL_ICHAR *text);
virtual void *Information(ZIL_INFO_REQUEST request, void *data,

ZIL_OBJECTID objectID = ID_DEFAULT);

#if defined(ZIL_MOTIF)
Widget labelWidget;

#endif
#if defined (ZIL_L0AD)

virtual ZIL_NEW_FUNCTION NewFunction(void);

Chapter 7 - UIW_GROUP 161

static UI_WINDOW_OBJECT *New(const ZIL_ICHAR *name,
ZIL_STORAGE_READ_ONLY *file = ZIL_NULLP(ZIL_STORAGE_READ_ONLY),
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY),
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

UIW_GROUP(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object,
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

virtual void Load(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

#endif
#if defined(ZIL_STORE)

virtual void Store(const ZIL_ICHAR *name, ZIL_STORAGE *file,
ZIL_STORAGE_OBJECT *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

#endif
protected:

ZIL_ICHAR *text;

#if defined(ZIL_MOTIF)
virtual void RegionMax(UI_WINDOW_OBJECT *object);

#endif
} ;

General Members

This section describes those members that are used for general purposes.

• _className contains a string identifying the class. The string is always the same
name as the class, is always in English, and never changes. For example, for the
UIW_GROUP class, _className is "UIW_GROUP."

• labelWidget is a Motif widget used to display the group's title in Motif. This
member is available in Motif only.

• text is the text that is to appear on the group's title.

UIW_GROUP::UIW_GROUP

Syntax
#include <ui_win.hpp>

UIW_GROUP(int left, int top, int width, int height, ZIL_ICHAR *text,
WNF_FLAGS wnFlags = WNF_AUTO_SELECT,
WOF_FLAGS woFlags=WOF_NO_FLAGS);

162 OpenZinc Application Framework—Programmer's Reference Volume 2

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This constructor creates a new UIW_GROUP object.

• leftin and topin is the starting position of the group. Typically, these values are in cell
coordinates. If the WOF_MINICELL flag is set, however, these values will be
interpreted as minicell values.

• widthin is the width of the group. Typically, this value is in cell coordinates. If the
WOF_MINICELL flag is set, however, this value will be interpreted as a minicell
value.

• heightin is the height of the group. Typically, this value is in cell coordinates. If the
WOF_MINICELL flag is set, however, this value will be interpreted as a minicell
value.

• textin is the text to display on the group's title. A hotkey for the group may be
specified by inserting the '&' character into the string before the desired hotkey
character. For example, if the string "Options" is to be displayed and 'O' is to be
the hotkey, the string should be entered as "&Options." The '&' will not be
displayed, but will cause the hotkey character to be drawn appropriately. If an '&'
is required in the text that is displayed, place two '&' characters in the string (e.g.,
"A && B" will display as "A & B" and the group will not have a hotkey).
Selecting the group using its hotkey will make the group current. This string is
copied by the UIW_GROUP class unless the WOF_NO_ALLOCATE_DATA flag is
set. If this flag is set, text must be space, allocated by the programmer, that is not
deleted until the UIW_GROUP object has been deleted.

• wnFlagsin are flags that define the operation of the group. The following flags
(declared in UI_WIN.HPP) affect the operation of a UIW_GROUP class object:

WNF_AUTO_SELECT—Causes each object in the group to be automatically
selected when it becomes current. Typically this flag is used when the group
contains radio buttons. If the end-user arrows through the radio buttons, the

Chapter 7 - UIW_GROUP 163

current button will always be the selected button. This flag is set by default in
the constructor.

WNF_AUTO_SORT—Causes the group options to be sorted in alphabetical
order.

WNF_NO_FLAGS—Does not associate any special flags with the group. This
flag should not be used in conjunction with any other WNF_ flags.

WNF_SELECT_MULTIPLE—Allows more than one option in the group to
become selected at the same time. This flag is typically used if the group
contains check boxes.

• woFlagsin are flags (common to all window objects) that determine the general
operation of the group object. The following flags (declared in UI_WIN.HPP)
control the general presentation of, and interaction with, a UIW_GROUP class object:

WOF_MINICELL—Causes the position and size values that were passed into
the constructor to be interpreted as minicells. A minicell is a fraction the size
of a normal cell. Greater precision in object placement is achieved by specifying
an object's position in minicell coordinates. A minicell is 1/1 Oth the size of a
normal cell by default.

WOF_NO_ALLOCATE_DATA—Prevents the object from allocating a buffer
to store the data. If this flag is set, the programmer is responsible for allocating
the memory for the data. The programmer is also responsible for deallocating
that memory when it is no longer needed.

WOF_NO_FLAGS—Does not associate any special window flags with the
object. This flag should not be used in conjunction with any other WOF flags.
This flag is set by default in the constructor.

WOF_NON_FIELD_REGION—Causes the object to ignore its position and
size parameters and use the remaining available space in its parent object.

WOF_NON_SELECTABLE—Prevents the object from being selected. If this
flag is set, the user will not be able to position on nor select any objects in the
group. Typically, the object will be drawn in such a manner as to appear non-
selectable (e.g., it may appear lighter than a selectable field).

164 OpenZinc Application Framework—Programmer's Reference Volume 2

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This virtual destructor destroys the class information associated with the UIW_GROUP
object. All objects attached to the group will also be destroyed.

Chapter 7 - UIW_GROUP 165

Example
#include <ui_win.hpp>

ExampleFunction(UI_WINDOW_MANAGER *windowManager) {
// Create a window and add it to the Window Manager.
UIW_WINDOW *window = new UIW_WINDOW(0, 0, 62, 10);
*window

+ new UIW_BORDER
+ new UIW_TITLE("Company Information")
+ &(*new UIW_GROUP(2, 9, 20, 6, "Group")

+ new UIW_BUTTON(1, 1, 16, "Radio-button 1", BTF_RADI0_BUTT0N,
WOF_NO_FLAGS)

+ new UIW_BUTTON(1, 2, 16, "Radio-button 2", BTF_RADIO_BUTTON,
WOF_NO_FLAGS)

+ new UIW_BUTTON(1, 3, 16, "Radio-button 3", BTF_RADIO_BUTTON,
WOF_NO_FLAGS)

+ new UIW_BUTTON(1, 4, 16, "Radio-button 4", BTF_RADIO_BUTTON,
WO F_N0_F LAGS)

+ new UIW_BUTTON(1, 5, 16, "Radio-button 5", BTF_RADIO_BUTTON,
WOF_NO_FLAGS))

*windowManager + window;

}

UIW_GROUP::~UIW_GROUP

Syntax

#include <ui_win.hpp>

virtual ~UIW_GROUP(void);

166 OpenZinc Application Framework—Programmer's Reference Volume 2

UIW_GROUP::ClassName

Syntax
#include <ui_win.hpp>

virtual ZIL_ICHAR *ClassName(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks

This virtual function returns the object's class name.

• returnValueoul is a pointer to _className.

UI W_G ROU P:: DataGet

Syntax

#include <ui_win.hpp>

ZIL_ICHAR *DataGet(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function gets the text associated with the group object.

• returnValueout is a pointer to the text associated with the group.

Example
#include <ui_win.hpp>

ExampleFunction(UIW_GROUP *groupObject) {
ZIL_ICHAR *text = groupObject->DataGet();

}

UIW_G ROUP::DataSet

Syntax
#include <ui_win.hpp>

void DataSet(ZIL_ICHAR *text);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function assigns new text to the group and redisplays the group. If no text is passed
in (i.e., text is NULL), the group will be redrawn.

• textin is a pointer to the new text information to be displayed on the group. If the
WOF_NO_ALLOCATE_DATA flag is set, text must be a string, allocated by the
programmer, that is not destroyed until the UIW_GROUP class object is destroyed.
Otherwise, the information associated with this argument is copied by the UIW_-
GROUP class object.

Chapter 7 - UIW_GROUP 167

Example
#include <ui_win.hpp>

ExampleFunctionl(UIW_GROUP *group) {

ZIL_ICHAR text[] = "Baud Rates";
group->DataSet(text);

}

UIW_G ROUP::Event

Syntax
#include <ui_win.hpp>

virtual EVENT_TYPE Event(const UI_EVENT &event);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function processes run-time messages sent to the group object. It is declared virtual
so that any derived group class can override its default operation.

• returnValueout indicates how event was processed. If the event is processed
successfully, the function returns the logical type of event that was interpreted from
event. If the event could not be processed, S_UNKNOWN is returned.

• eventin contains a run-time message for the group object. The type of operation
performed depends on the interpretation of the event. The following logical events
are processed by Event():

L_DOWN—Moves the focus down one object. This message is interpreted from
a keyboard event.

168 OpenZinc Application Framework—Programmer's Reference Volume 2

L_LEFT—Moves the focus left one object. This message is interpreted from
a keyboard event.

L_NEXT—The group object processes this message by suppressing it. This
allows the group's parent window to process it. This message is interpreted from
a keyboard event.

L_PREVIOUS—The group object processes this message by suppressing it.
This allows the group's parent window to process it. This message is interpreted
from a keyboard event.

L_RIGHT—Moves the focus right one object. This message is interpreted from
a keyboard event.

L_UP—Moves the focus up one object. This message is interpreted from a
keyboard event.

S_CHANGED—Causes the object to recalculate its position and size. When a
window is moved or sized, the objects on the window will need to recalculate
their positions. This message informs an object that it has changed and that it
should update itself.

S_CREATE—Causes the object to create itself. The object will calculate its
position and size and, if necessary, will register itself with the operating system.
This message is sent by the Window Manager when a window is attached to it
to cause the window and all the objects attached to the window to determine
their positions.

S_CURRENT—Causes the object to draw itself to appear current. This message
is sent by the Window Manager to the window when it becomes current. The
window, in turn, passes this message to the object on the window that is current.
If the group receives this message it sends it to the current object on the group.

S_DISPLAY_ACTIVE—Causes the object to draw itself to appear active. An
active object is one that is on the active (i.e., current) window. Most objects do
not display differently whether they are active or inactive. An active object
should not be confused with a current object. An object is active if it is on the
active window. However, it may not be the current object on the window.

The region that needs to be redisplayed is passed in the UI_REGION portion of
the UI_EVENT structure when this message is sent. The object only needs to
redisplay when the region passed by the event overlaps the region of the object.

Chapter 7 - UIW_GROUP 169

This message is sent by the window to all the non-current, active objects
attached to it.

S_DISPLAY_INACTIVE—Causes the object to draw itself to appear inactive.
An inactive object is one that is not on the active (i.e., current) window. Most
objects do not display differently whether they are inactive or active.

The region that needs to be redisplayed is passed in the UI_REGION portion of
the UI_EVENT structure when this message is sent. The object only needs to
redisplay when the region passed with the event overlaps the region of the object.
This message is sent by the window to all the objects attached to it.

S_MOVE—Causes the object to update its location. The distance to move is
contained in the position field of UI_EVENT. For example, an event.position. -
line of -10 and an event.position.column of 15 moves the object 10 lines up and
15 columns to the right.

S_NON_CURRENT—Indicates that the object has just become non-current.
This message is received when the user moves to another window.

S_REDISPLAY—Causes the object to redraw.

S_REGISTER_OBJECT—Causes the object to register itself with the operating
system.

All other events are passed by Event() to UIW_WINDOW::Event() for processing.

NOTE: Because most graphical operating systems already process their own events
related to this object, the messages listed above may not be handled in every
environment. Wherever possible, OpenZinc allows the operating system to process its own
messages so that memory use and speed will be as efficient as possible. In these
situations, the system event can be trapped in a derived Event() function.

UIW_GROUP::lnformation

Syntax
#include <ui_win.hpp>

virtual void *Information(ZIL_INFO_REQUEST request, void *data,
ZIL_OBJECTID objectID = ID_DEFAULT);

170 OpenZinc Application Framework—Programmer's Reference Volume 2

Portability
This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics • Windows
• OSF/Motif • Curses

• OS/2
• NEXTSTEP

Remarks
This function allows OpenZinc Application Framework objects and programmer functions to
get or modify specified information about an object.

• returnValueout is a pointer to the return data that was requested. The type of the
return data depends on the request. If the request did not require the return of
information, this value is NULL.

• requestin is a request to get or set information associated with the object. The
following requests (defined in UI_WIN.HPP) are recognized by the group:

I_CHANGED_FLAGS—Informs the object that the programmer has changed
some flags associated with the object and that the object should update itself
accordingly. This request should be sent after changing an object's flags,
particularly if the new flag settings will change the visual appearance of the
object.

I_COPY_TEXT—Copies the text associated with the group's title into a buffer
provided by the programmer. If this request is sent, data must be the address of
a buffer where the group's text will be copied. This buffer must be large enough
to contain all of the characters associated with the group and the terminating
NULL character.

I_GET_TEXT—Returns a pointer to the text associated with the group's title.
If this request is sent, data should be a doubly-indirected pointer to ZIL_ICHAR. If data is NULL, the group's text pointer will be returned as
returnValue. This request does not copy the text into a new buffer.

I_INITIALIZE_CLASS—Causes the object to initialize any basic information
that does not require a knowledge of its parent or sibling objects. This request
is sent from the constructor of the object.

Chapter 7 - UIW_GROUP 171

I_SET_TEXT—Sets the text associated with the group's title. This request will
also redisplay the object with the new text, data should be a pointer to the new
text.

All other requests are passed by Information() to UIW_WINDOW::Information()
for processing.

• datain/out is used to provide information to the function or to receive the information
requested, depending on the type of request. In general, this must be space allocated
by the programmer.

• objectIDin is a ZIL_OBJECTID that specifies which type of object the request is
intended for. Because the Information() function is virtual, it is possible for an
object to be able to handle a request at more than one level of its inheritance
hierarchy. objectID removes the ambiguity by specifying which level of an object's
hierarchy should process the request. If no value is provided for objectID, the object
will attempt to interpret the request with the objectID of the actual object type.

Example
#include <ui_win.hpp>
#include <string.h>

ExampleFunction() {
UIW_GROUP *groupl, *group2;
char string[30];

groupl->Information(I_COPY_TEXT, string);
group2-information(I_SET_TEXT, "Select Baud Rate:");

}

UIW_GROUP::RegionMax

Syntax
#include <ui_win.hpp>

virtual void RegionMax(UI_WINDOW_OBJECT *object);

172 OpenZinc Application Framework—Programmer's Reference Volume 2

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This virtual function calculates how much space object can occupy within the group and
sets object.trueRegion accordingly. The regions occupied by objects that have the WOF_NON_-
FIELD_REGION flag set are not included in the calculation since their regions are
reserved. The regions of any other objects, however, are still available and included in
the total region, since these objects can overlap with others.

• objectin is a pointer to the object that is requesting the maximum region of the group.
Its trueRegion member will be modified with its actual position.

Storage Members

This section describes those class members that are used for storage purposes.

UIW_GROUP::UIW_GROUP

Syntax
#include <ui_win.hpp>

UIW_GROUP(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object,
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

Chapter 7 - UIW_GROUP 173

Portability
This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics • Windows
• OSF/Motif • Curses

• OS/2
• NEXTSTEP

Remarks
This advanced constructor creates a new UIW_GROUP by loading the object from a data
file. Typically, the programmer does not need to use this constructor. If a group is stored
in a data file it is usually stored as part of a UIW_WINDOW and will be loaded when
the window is loaded.

• namein is the name of the object to be loaded.

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT:.objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT:.userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

174 OpenZinc Application Framework—Programmer's Reference Volume 2

UIW_GROUP::Load

Syntax
#include <ui_win.hpp>

virtual void Load(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object, UI_ITEM *objectTable,
UI_ITEM * userTable);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced function is used to load a UIW_GROUP from a persistent object data file.
It is called by the persistent constructor and is typically not used by the programmer.

• namein is the name of the object to be loaded.

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT:.objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

Chapter 7 - UIW_GROUP 175

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UIJVINDOW_OBJECT::userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

UIW_G ROUP::New

Syntax
#include <ui_win.hpp>

static UI_WINDOW_OBJECT *New(const ZIL_ICHAR *name,
ZIL_STORAGE_READ_ONLY *file =

ZIL_NULLP(ZIL_STORAGE_READ_ONLY),
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY),
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced function is used to load a persistent object from a data file. This function
is a static class member so that its address can be placed in a table used by the library to
load persistent objects from a data file.

NOTE: The application must first create a display if objects are to be loaded from a data
file.

• namein is the name of the object to be loaded.

176 OpenZinc Application Framework—Programmer's Reference Volume 2

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT:.objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT::userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

UIW_GROUP::NewFunction

Syntax
#include <ui_win.hpp>

virtual ZIL_NEW_FUNCTION NewFunction(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Chapter 7 - UIW_GROUP 177

Remarks
This virtual function returns a pointer to the object's New() function.

• returnValueout is a pointer to the object's New() function.

UIW_GROUP::Store

Syntax
#include <ui_win.hpp>

virtual void Store(const ZIL_ICHAR *name, ZIL_STORAGE *file,
ZIL_STORAGE_OBJECT *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced function is used to write an object to a data file.

• namein is the name of the object to be stored.

• filein is a pointer to the ZIL_STORAGE where the persistent object will be stored.
For more information on persistent object files, see "Chapter 66—ZIL_STORAGE"
of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT where the persistent object
information will be stored. This must be allocated by the programmer. For more
information on loading persistent objects, see "Chapter 68—ZIL_STORAGE_-
OBJECT" of Programmer's Reference Volume 1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see

178 OpenZinc Application Framework—Programmer's Reference Volume 2

the description of UI_WINDOW_OBJECT::objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT::userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

Chapter 7 - UIW_GROUP 179

OpenZinc Application Framework—Programmer's Reference Volume 2 180

CHAPTER 8 - UIW HZ LIST

The UIW_HZ_LIST class is a selection object used to present a list of objects to the end-
user. The objects can be text only or may contain a bitmap or icon. The horizontal list
will position the objects in multiple vertical columns, filling each column from top-to-
bottom before placing any objects in the next column. A horizontal scroll bar can be
added to the list to allow scrolling with the mouse. A typical use for the horizontal list
is to present a list of items, perhaps file names, and to allow the end-user to select one
or more of the items. The figure below shows the graphical implementation of a UIW_-
HZJLIST object with several string objects:

The UIW_HZ_LIST class is declared in UI_WIN.HPP. Its public and protected members
are:

class ZIL_EXPORT_CLASS UIW_HZ_LIST : public UIW_WINDOW {
public:

static ZIL_ICHAR _className[];

UIW_HZ_LIST(int left, int top, int width, int height,
int cellWidth, int cellHeight,
ZIL_COMPARE_FUNCTION compareFunction =

ZIL_NULLF(ZIL_COMPARE_FUNCTION),
WNF_FLAGS wnFlags = WNF_NO_WRAP | WNF_CONTINUE_SELECT,
WOF_FLAGS woFlags = WOF_BORDER,
WOAF_FLAGS woAdvancedFlags = WOAF_NO_FLAGS);

UIW_HZ_LIST(int left, int top, int width, int height,
ZIL_COMPARE_FUNCTION compareFunction, WOF_FLAGS flagSetting,
UI_ITEM *item);

virtual ~UIW_HZ_LIST(void);
virtual ZIL_ICHAR *ClassName(void);
virtual void Destroy(void);
virtual EVENT_TYPE Event (const UI_EVENT Seventh-
virtual void information(ZIL_INFO_REQUEST request, void *data,

Chapter 17 - UIW_PULL_DOWN_ITEM 181

ZIL_OBJECTID objectID = ID_DEFAULT);
virtual void Sort(void);

#if defined(ZIL_LOAD)
virtual ZIL_NEW_FUNCTION NewFunction(void);
static UI_WINDOW_OBJECT *New(const ZIL_ICHAR *name,

ZIL_STORAGE_READ_ONLY *file = ZIL_NULLP(ZIL_STORAGE_READ_ONLY),
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY),
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

UIW_HZ_LIST(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object,
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

virtual void Load(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

#endif
#if defined (ZIL_STORE)

virtual void Store(const ZIL_ICHAR *name, ZIL_STORAGE *file,
ZIL_STORAGE_OBJECT *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

#endif

// List members.
#if defined (ZIL_MACINTOSH)

UI_WINDOW_OBJECT *Add(UI_WINDOW_OBJECT *object);
#endif

protected:
int cellWidth;
int cellHeight;

#if defined (ZIL_MSDOS)
public:

virtual EVENT_TYPE
#endif
} ;

| | defined (ZIL_CURSES)

ScrollEvent(UI_EVENT &event);

General Members

This section describes those members that are used for general purposes.

• _className contains a string identifying the class. The string is always the same
name as the class, is always in English, and never changes. For example, for the
UIW_HZ_LIST class, _className is "UIW_HZ_LIST."

• cellWidth is the width of each cell or column in the horizontal list. If the horizontal
list is wider than the cell width, the list will have multiple columns.

• cellHeight is the height of each cell or row in the horizontal list. If the horizontal list
is taller than the cell height, the list will have multiple rows.

182 OpenZinc Application Framework—Programmer's Reference Volume 2

UIW_HZ_LIST::UIW_HZ_LIST

Syntax
#include <ui_win.hpp>

UIW_HZ_LIST(int left, int top, int width, int height, int cellWidth, int cellHeight,
ZIL_COMPARE_FUNCTION compareFunction =

ZIL_NULLF(ZIL_COMPARE_FUNCTION),
WNF_FLAGS wnFlags = WNF_NO_WRAP,
WOF_FLAGS woFlags = WOF_BORDER,
WOAF_FLAGS woAdvancedFlags - WOAF_NO_FLAGS);
or

UIW_HZ_LIST(int left, int top, int width, int height,
ZIL_COMPARE_FUNCTION compareFunction, WOF_FLAGS flagSetting,
UI_ITEM *item);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks

These overloaded constructors create a new UIW_HZ_LIST object.

The first overloaded constructor creates a UIW_HZ_LIST object.

• lejtin and topin is the starting position of the horizontal list. Typically, these values
are in cell coordinates. If the WOF_MINICELL flag is set, however, these values
will be interpreted as minicell values.

• widthm is the width of the horizontal list. Typically, this value is in cell coordinates.
If the WOF_MINICELL flag is set, however, this value will be interpreted as a
minicell value.

• heightin is the height of the horizontal list. Typically, this value is in cell coordinates.
If the WOF_MINICELL flag is set, however, this value will be interpreted as a
minicell value.

Chapter 8 - UIW_HZ_LIST 183

• cellWidthin is the width of each cell or column in the horizontal list. Typically, this
value is in cell coordinates. If the WOF_MINICELL flag is set, however, this value
will be interpreted as a minicell value.

• cellHeightin is the height of each cell or row in the horizontal list. Typically, this
value is in cell coordinates. If the WOF_MINICELL flag is set, however, this value
will be interpreted as a minicell value.

• compareFunctionin is a programmer defined function that will be called by the library
when sorting the list of objects attached to the horizontal list. compareFunction is
called as each individual object is added and if the list is sorted explicitly by calling
the Sort() function. The objects can be sorted based on any key unique to the
object. Pointers to the objects being compared are passed to the compareFunction,
so any information required to do the sorting needs to be associated with the object.
Because the objects can be of any type, even a derived type, the object pointers will
need to be typecast in the compareFunction.

The definition of the compareFunction is as follows:

int FunctionName(void * element 1, void *element2);

returnValueout indicates the relative ordering of the two elements. returnValue
should be negative if element1 should be placed in front of element2, 0 if the two
elements are sorted the same or positive if element 1 should come after element2.

elementlin is a pointer to the first element to be compared. This void pointer
must be typecast according to the type of object being sorted.

element2in is a pointer to the second element to be compared. This void pointer
must be typecast according to the type of object being sorted.

• wnFlagsin are flags that define the operation of the horizontal list. The following
flags (declared in UI_WIN.HPP) affect the operation of a UIW_HZ_LIST class
object:

WNF_AUTO_SELECT—Causes each object in the list to be automatically
selected when it becomes current. This flag is typically used when radio buttons
are added to the horizontal list.

WNF_AUTO_SORT—Causes the horizontal list options to be sorted in
alphabetical order.

184 OpenZinc Application Framework—Programmer's Reference Volume 2

WNF_BITMAP_CHILDREN—Indicates that some of the objects contain
bitmaps. Setting this flag will affect the spacing of objects in the list. Normally,
objects are spaced according to a pre-determined cell height value. If this flag
is set, however, the objects will be spaced according to the actual height of the
objects. This flag should be set when adding check boxes or radio buttons to the
horizontal list.

WNF_CONTINUE_SELECT—Allows the end-user to drag through the list
options with the mouse button pressed. If this flag is not set, the highlight on
the list options will not follow the dragging mouse.

WNF_NO_FLAGS—Does not associate any special window flags with the
object. This flag should not be used in conjunction with any other WNF_-
FLAGS.

WNF_NO_WRAP—Will not allow arrowing up, down, left or right to wrap
from the end of the list to the beginning or vice versa.

WNF_SELECT_MULTIPLE—Allows more than one object to be selected at
a time.

• woFlagsin are flags (common to all window objects) that determine the general
operation of the horizontal list object. The following flags (declared in
UI_WIN.HPP) control the general presentation of, and interaction with, a UIW_HZ_-
LIST class object:

WOF_BORDER—Draws a border around the object. The graphical border's
appearance will depend on the operating system used, and, if in DOS, on the
graphics style being used. In text mode, a border may or may not be drawn,
depending on the text style being used. See "Appendix A—Support
Definitions" in this manual for information on changing DOS graphics mode
styles and text mode styles.

WOF_MINICELL—Causes the position and size values that were passed into
the constructor to be interpreted as minicells. A minicell is a fraction the size
of a normal cell. Greater precision in object placement is achieved by specifying
an object's position in minicell coordinates. A minicell is 1/1 Oth the size of a
normal cell by default.

WOF_NO_FLAGS—Does not associate any special window flags with the
object. This flag should not be used in conjunction with any other WOF flags.

Chapter 8 - UIW_HZ_UST 185

WOF_NON_FIELD_REGION—Causes the object to ignore its position and
size parameters and use the remaining available space in its parent object.

WOF_NON_SELECTABLE—Prevents the object from being selected.
Typically, the object will be drawn in such a manner as to appear non-selectable
(e.g., it may appear lighter than a selectable field).

• woAdvancedFlagsin are flags (general to all window objects) that determine the
advanced operation of the horizontal list object.

WOAF_NO_FLAGS—Does not associate any special advanced flags with the
window object. This flag should not be used in conjunction with any other
WOAF flags.

WOAF_NON_CURRENT—Prevents the object from becoming current. If this
flag is set, users will not be able to select the horizontal list from the keyboard.
The horizontal list may still be selected using the mouse, but it will not become
current.

The second overloaded constructor creates a horizontal list using a pre-defined item array.
These items are used to create UIW_STRING objects. The horizontal list's cellWidth is
set to the list's width and cellHeight is set to 1.

• left i n and topin is the starting position of the horizontal list. Typically, these values
are in cell coordinates. If the WOF_MINICELL flag is set, however, these values
will be interpreted as minicell values.

• widthin is the width of the horizontal list. Typically, this value is in cell coordinates.
If the WOF_MINICELL flag is set, however, this value will be interpreted as a
minicell value.

• heightin is the height of the horizontal list. Typically, this value is in cell coordinates.
If the WOF_MINICELL flag is set, however, this value will be interpreted as a
minicell value.

• compareFunctionin is a programmer defined function that will be called by the library
when sorting the list of objects attached to the horizontal list. For more details, see
the description of compareFunction with the first constructor.

• flagSettingin is a value that is checked against each UI_ITEM's value field. If the
item's value field is the same as flagSetting, that item is marked as selected.

186 OpenZinc Application Framework—Programmer's Reference Volume 2

Chapter 8 - UIW_HZ_LIST 187

• itemin is an array of UI_ITEM structures that are used to construct a set of string
items within the horizontal list. For more information regarding the use of the
UI_ITEM structure, see "Chapter 18—UI_ITEM" in Programmer's Reference
Volume 1.

Example
#include <ui_win.hpp>

ExampleFunctionl(UI_WINDOW_MANAGER *windowManager)
{

// Create the list field.
UIW_HZ_LIST * list = new UIW_HZ_LIST(10, 1, 42, 6, 14, 1);
*list

+ new UIW_STRING(0, 0, 14, "Item 1", 64, STF_NO_FLAGS)
+ new UIW_STRING(0, 0, 14, "Item 2", 64, STF_NO_FLAGS)
+ new UIW_STRING(0, 0, 14, "Item 3", 64, STF_NO_FLAGS)
+ new UIW_STRING(0, 0, 14, "Item 4", 64, STF_NO_FLAGS);

// Attach the list to the window.
UIW_WINDOW *window = new UIW_WINDOW(0, 0, 60, 10);
*window

+ UIW_BORDER
+ new UIW_TITLE("Sample list")
+ new UIW_PROMPT(2, 1, "List:")
+ list;

*windowManager + window;

// The list will automatically be destroyed when the window
// is destroyed.

}

ExampleFunction2(UI_WINDOW_MANAGER *windowManager)
{

UI_ITEM listItems[] = {
{ 11, NULL, "Item 1.1", STF_NO_FLAGS },
{ 12, NULL, "Item 1.2", STF_NO_FLAGS },
{ 21, NULL, "Item 2.1", STF_NO_FLAGS },
{ 22, NULL, "Item 2.2", STF_NO_FLAGS },
{ 0, NULL, NULL, 0 }

} ;

// Create the window.
UIW_WINDOW *window = new UIW_WINDOW(0, 0, 40, 10);
*window

+ UIW_BORDER
+ new UIW_TITLE(" Sample list ")
+ new UIW_PROMPT(2, 1, "List:")
+ new UIW_HZ_LIST(10, 1, 20, 6, NULL, WOF_NO_FLAGS, listltems);

*windowManager + window;

// The list will automatically be destroyed when the window
// is destroyed.

}

UIW_HZ_LIST::~UIW_HZ_LIST

Syntax

#include <ui_win.hpp>

virtual ~UIW_HZ_LIST(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

This virtual destructor destroys the class information associated with the UIW_HZ_LIST
object. All objects attached to the horizontal list will also be destroyed.

Remarks

UIW HZ LIST::Add

Syntax
#include <ui_win.hpp>

UI_WINDOW_OBJECT *Add(UI_WINDOW_OBJECT *object);
or

UIW_HZ_LIST &operator + (UI_WINDOW_OBJECT *object);

Portability
This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics • Windows
• OSF/Motif • Curses

• OS/2
• NEXTSTEP

188 OpenZinc Application Framework—Programmer's Reference Volume 2

Remarks
This function is used to add an object to the horizontal list.

• returnValueout is a pointer to object if the addition was successful. Otherwise,
returnValue is NULL.

• objectin is a pointer to the object to be added to the horizontal list.

The second overloaded operator adds an item to the UIW_HZ_LIST. This operator
overload is equivalent to calling the Add() function, except that it allows the chaining
of item additions to the UIW_HZ_LIST.

• returnValueout is a pointer to the UIW_HZ_LIST object. This pointer is returned so
that the operator may be used in a statement containing other operations.

• objectin is a pointer to the item that is to be added to the list.

UIW_HZ_LIST::ClassName

Syntax
#include <ui_win.hpp>

virtual ZIL_ICHAR *ClassName(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This virtual function returns the object's class name.

• returnValueout is a pointer to _className.

Chapter 8 - UIW_HZ_LIST 189

UIW_HZ_LIST::Destroy

Syntax

#include <ui_win.hpp>

virtual void Destroy (void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function destroys all the objects attached to the horizontal list.

UIW_HZ_LIST::Event

Syntax
#include <ui_win.hpp>

virtual EVENT_TYPE Event(const UI_EVENT &event);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function processes run-time messages sent to the horizontal list object. It is declared
virtual so that any derived horizontal list class can override its default operation.

190 OpenZinc Application Framework—Programmer's Reference Volume 2

• returnValueout indicates how event was processed. If the event is processed
successfully, the function returns the logical type of event that was interpreted from
event. If the event could not be processed, S_UNKNOWN is returned.

• eventin contains a run-time message for the horizontal list object. The type of
operation performed depends on the interpretation of the event. The following logical
events are processed by Event():

L_BEGIN_SELECT—Indicates that the end-user began the selection of the
object by pressing the mouse button down while on the object.

L_BOTTOM—Scrolls the list to the last page and makes the last item in the list
current. This message is interpreted from a keyboard event.

L_CONTINUE_SELECT—Indicates that the end-user previously clicked down
on the object with the mouse and is now continuing to hold the mouse button
down while on the object.

L_DOUBLE_CLICK—Indicates that the end-user double-clicked on an object
with the mouse.

L_DOWN—Moves the focus down one object. If the current object is at the
bottom of a column focus will move to the top item in the next column. If the
current object is at the end of the list and the WNF_NO_WRAP flag is not set,
focus will move to the first item in the list. This message is interpreted from a
keyboard event.

L_END_SELECT—Indicates that the selection process, initiated with the L_-
BEGIN_SELECT message, is complete. For example, the end-user has pressed
and released the mouse button.

L_LEFT—Moves the focus left one object. This message is interpreted from
a keyboard event.

L_NEXT—The list object processes this message by suppressing it. This allows
the list's parent window to process it. This message is interpreted from a
keyboard event.

L_PGDN—Causes the list to scroll right a page. This message is interpreted
from a keyboard event.

Chapter 8 - UIW_HZ_LIST 191

L_PGUP—Causes the list to scroll left a page. This message is interpreted from
a keyboard event.

L_PREVIOUS—The list object processes this message by suppressing it. This
allows the list's parent window to process it. This message is interpreted from
a keyboard event.

L_RIGHT—Moves the focus right one object. This message is interpreted from
a keyboard event.

L_SELECT—Indicates that an object on the list has been selected.

L_TOP—Scrolls the list to the first page and makes the first item in the list
current. This message is interpreted from a keyboard event.

L_UP—Moves the focus up one object. If the current object is at the top of a
column focus will move to the bottom item in the previous column. If the
current object is at the beginning of the list and the WNF_NO_WRAP flag is not
set, focus will move to the last item in the list. This message is interpreted from
a keyboard event.

L_VIEW—Indicates that the mouse is being moved over the list. This message
allows the list to alter the mouse image.

S_ADD_OBJECT—Causes a new object to be added to the list, event.data will
point to the new object to be added.

S_CHANGED—Causes the object to recalculate its position and size. When a
window is moved or sized, the objects on the window will need to recalculate
their positions. This message informs an object that it has changed and that it
should update itself.

S_CREATE—Causes the object to create itself. The object will calculate its
position and size and, if necessary, will register itself with the operating system.
This message is sent by the Window Manager when a window is attached to it
to cause the window and all the objects attached to the window to determine
their positions.

S_CURRENT—Causes the object to draw itself to appear current. This message
is sent by the Window Manager to the window when it becomes current. The
window, in turn, passes this message to the object on the window that is current.
The horizontal list passes the message to its current item.

192 OpenZinc Application Framework—Programmer's Reference Volume 2

S_DEINITIALIZE—Informs the object that it is about to be removed from the
application and that it should deinitialize any information. The Window Manager
sends this message to a window when the window is subtracted from the
Window Manager. The window, in turn, relays the message to all objects
attached to it. The horizontal list sends the message to all its children.

S_DISPLAY_ACTIVE—Causes the object to draw itself to appear active. An
active object is one that is on the active (i.e., current) window. Most objects do
not display differently whether they are active or inactive. An active object
should not be confused with a current object. An object is active if it is on the
active window. However, it may not be the current object on the window.

The region that needs to be redisplayed is passed in the UI_REGION portion of
the UI_EVENT structure when this message is sent. The object only needs to
redisplay when the region passed by the event overlaps the region of the object.

S_DISPLAY_INACTIVE—Causes the object to draw itself to appear inactive.
An inactive object is one that is not on the active (i.e., current) window. Most
objects do not display differently whether they are inactive or active.

The region that needs to be redisplayed is passed in the UI_REGION portion of
the UI_EVENT structure when this message is sent. The object only needs to
redisplay when the region passed with the event overlaps the region of the object.

S_DRAG_COPY_OBJECT—Indicates the user is dragging the object to copy
it.

S_DRAG_MOVE_OBJECT—Indicates the user is dragging the object to move
it.

S_DROP_COPY_OBJECT—Indicates the user dropped an object to copy it to
this object.

S_DROP_MOVE_OBJECT—Indicates the user dropped an object to move it
to this object.

S_HSCROLL—Causes the list to scroll horizontally, event.scroll.delta indicates
how far to scroll.

S_HSCROLL_CHECK—Causes the list to scroll the current item into view if
it is not currently visible.

Chapter 8 - UIW_HZ_LIST 193

S_INITIALIZE—Causes the object to initialize any necessary information that
may require a knowledge of its parent or siblings. When the window is added
to the Window Manager, the Window Manager sends this message to cause the
window and all the objects attached to the window to initialize themselves.

S_MOVE—Causes the object to update its location. The distance to move is
contained in the position field of UI_EVENT. For example, an event.position.-
line of -10 and an event.position.column of 15 moves the object 10 lines up and
15 columns to the right.

S_NON_CURRENT—Indicates that the object has just become non-current.
This message is received when the user moves to another object or window.

S_REDISPLAY—Causes the object to redraw.

S_REGISTER_OBJECT—Causes the object to register itself with the operating
system.

S_SUBTRACT_OBJECT—Causes an object to be subtracted from the list.
event.data will point to the object to be subtracted.

All other events are passed by Event() to UIW_WINDOW::Event() for processing.

NOTE: Because most graphical operating systems already process their own events
related to this object, the messages listed above may not be handled in every
environment. Wherever possible, OpenZinc allows the operating system to process its own
messages so that memory use and speed will be as efficient as possible. In these
situations, the system event can be trapped in a derived Event() function.

UIW_HZ_LIST::Information

Syntax
#include <ui_win.hpp>

virtual void *Information(ZIL_INFO_REQUEST request, void *data,
ZIL_OBJECTID objectID = ID_DEFAULT);

194 OpenZinc Application Framework—Programmer's Reference Volume 2

Portability
This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics • Windows
• OSF/Motif • Curses

• OS/2
• NEXTSTEP

Remarks
This function allows OpenZinc Application Framework objects and programmer functions to
get or modify specified information about an object.

• returnValueout is a pointer to the return data that was requested. The type of the
return data depends on the request. If the request did not require the return of
information, this value is NULL.

• requestin is a request to get or set information associated with the object. The
following requests (defined in UI_WIN.HPP) are recognized by the horizontal list:

I_CHANGED_FLAGS—Informs the object that the programmer has changed
some flags associated with the object and that the object should update itself
accordingly. This request should be sent after changing an object's flags,
particularly if the new flag settings will change the visual appearance of the
object.

I_DESTROY_LIST—Destroys all non-support objects attached to the list. This
request simply calls Destroy().

I_GET_BITMAP_ARRAY—Returns a pointer to the bitmap array of the
current object if it has a bitmap. If a bitmap does not exist, NULL is returned.
If this message is sent, data must be a pointer to ZIL_UINT8.

I_GET_TEXT—Returns a pointer to the text associated with the current object.
If this request is sent, data should be a doubly-indirected pointer to ZIL_ICHAR. This request does not copy the text into a new buffer.

I_INITIALIZE_CLASS—Causes the object to initialize any basic information
that does not require a knowledge of its parent or sibling objects. This request
is sent from the constructor of the object.

Chapter 8 - UIW_HZ_LIST 195

I_SET_BITMAP_ARRAY—Sets the bitmap array associated with the current
object, if it has a bitmap. If this message is sent, data must be a pointer to an
array of ZIL_UINT8 that contains the object's new bitmap.

All other requests are passed by Information() to UIW_WINDOW::Information()
for processing.

• datain/out is used to provide information to the function or to receive the information
requested, depending on the type of request. In general, this must be space allocated
by the programmer.

• objectIDin is a ZIL_OBJECTID that specifies which type of object the request is
intended for. Because the Information() function is virtual, it is possible for an
object to be able to handle a request at more than one level of its inheritance
hierarchy. objectID removes the ambiguity by specifying which level of an object's
hierarchy should process the request. If no value is provided for objectID, the object
will attempt to interpret the request with the objectID of the actual object type.

Example
#include <ui_win.hpp>
#include <string.h>

ExampleFunction() {
UIW_HZ_LIST * 1ist;

WOF_FLAGS flags;
1i st->Information(I_GET_FLAGS, &flags, ID_WINDOW_OBJECT);

flags = WOF_BORDER;
list->Information(I_SET_FLAGS, &flags, ID_WINDOW_OBJECT);
flags = WOF_NON_SELECTABLE;
1i st->Informat ion(I_CLEAR_FLAGS, &flags, ID_WINDOW_OBJECT);

196 OpenZinc Application Framework—Programmer's Reference Volume 2

UIW_HZ_LIST::ScrollEvent

Syntax
#include <ui_win.hpp>

virtual EVENT_TYPE ScrollEvent(UI_EVENT &event);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function handles events related to scrolling the horizontal list. Any events that may
result in the list's scroll region getting updated (e.g., S_CREATE, L_SIZE) will call this
function to update the scroll information. This function is used by OpenZinc. The programmer
typically will not call this function.

• returnValueout indicates how event was processed. If the event is processed
successfully, the function returns the logical type of event that was interpreted from
event. If the event could not be processed, S_UNKNOWN is returned.

• eventin contains a run-time scrolling message for the horizontal list object. The type
of operation performed depends on the event. The following logical events are
processed by ScrollEvent():

S_SCROLLRANGE—Updates the scroll values maintained in scroll and
vScrollInfo. This event also updates the scroll bar's information, if one exists.

S_HSCROLL_CHECK—Causes the list to scroll the current item into view if
it is not currently visible.

S_HSCROLL_WINDOW—Causes the objects on the horizontal list to scroll
horizontally, event.scroll.delta should contain the amount to scroll.

Chapter 8 - UIW_HZ_LIST 197

UIW HZ LIST::Sort

Syntax

#include <ui_gen.hpp>

void Sort(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

This function sorts the UIW_HZ_LIST object using the compareFunction that was
assigned in the constructor. If the list has no compare function, no sort occurs.

UIW_HZ_LIST::Subtract
UIW_HZ_LIST::operator -

Syntax
#include <ui_gen.hpp>

UI_WINDOW_OBJECT *Subtract(UI_WINDOW_OBJECT * object);

Remarks

or
UIW_HZ_LIST &operator - (UI_WINDOW_OBJECT *object);

Portability
This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics • Windows
• OSF/Motif • Curses

• OS/2
• NEXTSTEP

198 OpenZinc Application Framework—Programmer's Reference Volume 2

Remarks
These functions remove an object from the UIW_HZ_LIST.

The first function removes an object from the UIW_HZ_LIST but does not call the
destructor associated with the object. The programmer is responsible for deletion of each
object explicitly subtracted from a list.

• returnValueout is a pointer to the next item in the list. This value is NULL if there
are no more items after the subtracted item.

• elementin is a pointer to the item to be subtracted from the list.

The second overloaded operator removes an item from the UIW_HZ_LIST but does not
call the destructor associated with the object. This operator overload is equivalent to
calling the Subtract() function, except that it allows the chaining of item removals from
the UIW_HZ_LIST.

• returnValueout is a pointer to the UIW_HZ_LIST object. This pointer is returned so
that the operator may be used in a statement containing other operations.

• objectin is a pointer to the item that is to be subtracted from the list.

Storage Members

This section describes those class members that are used for storage purposes.

UIW_HZ_LIST::UIW_HZ_LIST

Syntax
#include <ui_win.hpp>

UIW_HZ_LIST(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object,
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

Chapter 8 - UIW_HZ_LIST 199

Portability
This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics • Windows
• OSF/Motif • Curses

• OS/2
• NEXTSTEP

Remarks
This advanced constructor creates a new UIW_HZ_LIST by loading the object from a
data file. Typically, the programmer does not need to use this constructor. If a horizontal
list is stored in a data file it is usually stored as part of a UIW_WINDOW and will be
loaded when the window is loaded.

• namein is the name of the object to be loaded.

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT:.objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT: .userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

200 OpenZinc Application Framework—Programmer's Reference Volume 2

UIW_HZ_LIST: :Load

Syntax
#include <ui_win.hpp>

virtual void Load(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced function is used to load a UIW_HZ_LIST from a persistent object data file.
It is called by the persistent constructor and is typically not used by the programmer.

• namein is the name of the object to be loaded.

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY'' of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WlNDOW_OBJECT:.objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

Chapter 8 - UIW_HZ_LIST 201

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT: .userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

UIW_HZ_LIST::New

Syntax
#include <ui_win.hpp>

static UI_WINDOW_OBJECT *New(const ZIL_ICHAR *name,
ZIL_STORAGE_READ_ONLY *file =

ZIL_NULLP(ZIL_STORAGE_READ_ONLY),
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY),
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced function is used to load a persistent object from a data file. This function
is a static class member so that its address can be placed in a table used by the library to
load persistent objects from a data file.

NOTE: The application must first create a display if objects are to be loaded from a data
file.

• namein is the name of the object to be loaded.

202 OpenZinc Application Framework—Programmer's Reference Volume 2

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UIJVINDOW_OBJECT:.objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT::userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

UIW HZ LIST::NewFunction

Syntax
#include <ui_win.hpp>

virtual ZIL_NEW_FUNCTION NewFunction(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Chapter 8 - UIW_HZ_UST 203

Remarks
This virtual function returns a pointer to the object's New() function.

• returnValueout is a pointer to the object's New() function.

UIW_HZ_LIST: .Store

Syntax
#include <ui_win.hpp>

virtual void Store(const ZIL_ICHAR *name, ZIL_STORAGE *file,
ZIL_STORAGE_OBJECT *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced function is used to write an object to a data file.

• namein is the name of the object to be stored.

• filein is a pointer to the ZIL_STORAGE where the persistent object will be stored.
For more information on persistent object files, see "Chapter 66—ZIL_STORAGE"
of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT where the persistent object
information will be stored. This must be allocated by the programmer. For more
information on loading persistent objects, see "Chapter 68—ZIL_STORAGE_-
OBJECT" of Programmer's Reference Volume 1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see

204 OpenZinc Application Framework—Programmer's Reference Volume 2

the description of UI_WINDOW_OBJECT:.objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT:.userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

Chapter 8 - UIW_HZ_LIST 205

OpenZinc Application Framework—Programmer's Reference Volume 2 206

CHAPTER 9 - UIW_ICON

The UIW_ICON class can be used in several ways: to perform an action when selected
by the end-user; to provide an image to enhance an application's appearance or to clarify
an operation; or as a minimize icon for a window. An icon displays a 32x32 pixel image
(in graphics modes only). In text mode, only the icon's text, if any, will be displayed.

Icons used within OpenZinc Application Framework may be created using the image editor in
OpenZinc Designer, or they may be converted from an operating system-specific icon image
using the OpenZinc Designer. The figure below shows the graphic implementation of several
UIW_ICON objects:

The UIW_ICON class is declared in UI_WIN.HPP. Its public and protected members
are:

class ZIL_EXPORT_CLASS UIW_ICON : public UI_WINDOW_OBJECT {
public:

static ZIL_ICHAR _className [] ;
static ZIL_ICHAR _applicationIconName[];
static ZIL_ICHAR _asteriskIconName[];
static ZIL_ICHAR _exclamationIconName[];
static ZIL_ICHAR _handIconName[];
static ZIL_ICHAR _questionIconName[];
ICF_FLAGS icFlags;

UIW_ICON(int left, int top, ZIL_ICHAR *iconName,
ZIL_ICHAR *title = ZIL_NULLP(ZIL_ICHAR),
ICF_FLAGS icFlags = ICF_NO_FLAGS,
WOF_FLAGS woFlags = WOF_JUSTIFY_CENTER | WOF_NON_SELECTABLE,
ZIL_USER_FUNCTION userFunction = ZIL_NULLF(ZIL_USER_FUNCTION));

virtual ~UIW_ICON(void);
virtual ZIL_ICHAR *ClassName(void);
ZIL_ICHAR *DataGet(void) ;
void DataSet(ZIL_ICHAR *text);

Chapter 9 - UIW_ICON 207

virtual EVENT_TYPE Event(const UI_EVENT &event);
virtual void *Information(ZIL_INFO_REQUEST request, void *data,

ZIL_OBJECTID objectID = ID_DEFAULT);

#if defined (ZIL_LOAD)
virtual ZIL_NEW_FUNCTION NewFunction(void);
static UI_WINDOW_OBJECT *New(const ZIL_ICHAR *name,

ZIL_STORAGE_READ_ONLY *file = ZIL_NULLP(ZIL_STORAGE_READ_ONLY),
ZIL_STORAGE_0BJECT_READ_ONLY *object =

ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY),
UI_ITEM *objectTable = ZIL_NULLP (UI_ITEM) ,

UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));
UIW_ICON(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,

ZIL_STORAGE_OBJECT_READ_ONLY *object,
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM) ,
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

virtual void Load(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object, UI_ITEM *objectTable,

UI_ITEM *userTable);
#endif
#if defined (ZIL_STORE)

virtual void Store(const ZIL_ICHAR *name, ZIL_STORAGE *file,
ZIL_STORAGE_OBJECT *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

#endif

protected:
ZIL_ICHAR *tit1e;
ZIL_ICHAR *iconName;
int iconWidth;
int iconHeight;
ZIL_UINT8 *iconArray;
ZIL_ICON_HANDLE icon;

#if defined(ZIL_MSDOS) | | defined(ZIL_CURSES)
UI_REGION iconRegion;
UI_REGION titleRegion;

#endif

virtual EVENT_TYPE Drawltem(const UI_EVENT &event, EVENT_TYPE ccode);
} ;

General Members

This section describes those members that are used for general purposes.

_className contains a string identifying the class. The string is always the same
name as the class, is always in English, and never changes. For example, for the
UIW_ICON class, _className is "UIW_ICON."

_applicationIconName is the name of the "application" icon in the default OpenZinc data
file. The application icon is the icon used as the minimize icon. _applicationlcon-
Name is "APPLICATION" by default.

208 OpenZinc Application Framework—Programmer's Reference Volume 2

• _asteriskIconName is the name of the "asterisk" icon in the default OpenZinc data file.
The asterisk icon is the icon used when presenting information to the user. _asterisk-
IconName is "ASTERISK" by default.

• _exclamationIconName is the name of the "exclamation" icon in the default OpenZinc
data file. The exclamation icon is the icon used to alert the user to a situation.
_exclamationIconName is "EXCLAMATION" by default.

• _handlconName is the name of the "hand" icon in the default OpenZinc data file. The
hand icon is the icon used to warn the user of a dangerous condition. Jiandlcon-
Name is "HAND" by default.

• _questionIconName is the name of the "question" icon in the default OpenZinc data file.
The question icon is the icon used as the minimize icon for the help system.
_questionIconName is "QUESTION" by default.

• icFlags are flags that define the operation of the UIW_ICON class. A full
description of the icon flags is given in the UIW_ICON constructor.

• title is the text that is shown on the icon.

• iconName is the icon's name in a OpenZinc .DAT file or an operating system resource
file. iconName is used if the icon is to be read from a OpenZinc .DAT file or from an
operating system resource file. When the icon is to be loaded, OpenZinc Application
Framework first searches the operating system resources for the icon image. If the
icon was not found as an operating system resource, UI_WINDOW_OBJECT::-
defaultStorage is searched.

• iconWidth is the width of the icon bitmap.

• iconHeight is the height of the icon bitmap.

• iconArray is an array of ZILJJINT8 that contains the actual bitmap data.

• icon is an operating system-specific icon handle. Wherever possible, the icon array
is converted to a format that the operating system or graphics library can process
more efficiently than a bitmap array, icon is a handle to the converted icon.

• iconRegion is the region occupied by the icon image. This member is available in
DOS and Curses only.

Chapter 9 - UIW_ICON 209

• titleRegion contains the region occupied by the icon's title string (if any). This
member is available in DOS and Curses only.

UIW_ICON::UIW_ICON

Syntax
#include <ui_win.hpp>

UIW_ICON(int left, int top, ZIL_ICHAR *iconName,
ZIL_ICHAR *title = ZIL_NULLP(ZIL_ICHAR),
ICF_FLAGS icFlags = ICF_NO_FLAGS,
WOF_FLAGS woFlags = WOF JUSTIFY_CENTER | WOF_NON_SELECTABLE,
ZIL_USER_FUNCTION userFunction = ZIL_NULLF(ZIL_USER_FUNCTION));

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This constructor creates a new UIW_ICON class object.

• left i n and topin is the starting position of the icon field within its parent window.
Typically, these values are in cell coordinates. If the WOF_MINICELL flag is set,
however, these values will be interpreted as minicell values.

• iconNamejn is the name of the icon as it is stored in the .DAT or resource file.

• titlein is the text to place directly under the icon when it is displayed on the screen.

• icFlagsin are flags that define the operation of the UIW_ICON class. The following
flags (declared in UI_GEN.HPP) control the general presentation of a UIW_ICON
class object:

ICF_DOUBLE_CLICK—Causes the userFunction function, if one exists, to be
called if the user double-clicks on the icon.

210 OpenZinc Application Framework—Programmer's Reference Volume 2

ICF_MINIMIZE_OBJECT—Indicates that the icon is to be used as the
minimize icon for a window.

ICF_NO_FLAGS—Does not associate any special flags with the UIW_ICON
class object. In this case the icon requires a down and up click from the mouse
to complete an action. This flag is set by default in the constructor.

ICF_STATICJCONARRAY—Causes the bitmap array that is used for the
image to not be deleted. By default, when an icon is created, the icon image
array is converted to a native storage structure and the array is deleted. If the
image array should not be deleted after this conversion is performed (e.g., if the
same icon image is to be used for multiple objects), then the ICF_STATIC_-
ICONARRAY flag should be set.

• woFlagsin are flags (common to all window objects) that determine the general
operation of the icon object. The following flags (declared in UI_WIN.HPP) control
the general presentation of, and interaction with, a UIW_ICON class object:

WOF_BORDER—Draws a border around the object. The graphical border's
appearance will depend on the operating system used, and, if in DOS, on the
graphics style being used. In text mode, a border may or may not be drawn,
depending on the text style being used. See "Appendix A—Support
Definitions" in this manual for information on changing DOS graphics mode
styles and text mode styles. This flag is set by default in the constructor.

WOF_JUSTIFY_CENTER—Center-justifies the text within the displayed icon.
This flag is set by default in the constructor.

WOF_JUSTIFY_RIGHT—Right-justifies the text within the displayed icon.

WOF_MINICELL—Causes the position and size values that were passed into
the constructor to be interpreted as minicells. A minicell is a fraction the size
of a normal cell. Greater precision in object placement is achieved by specifying
an object's position in minicell coordinates. A minicell is 1/1 Oth the size of a
normal cell by default.

WOF_NO_ALLOCATE_DATA—Prevents the object from allocating a buffer
to store the data. If this flag is set, the programmer is responsible for allocating
the memory for the data. The programmer is also responsible for deallocating
that memory when it is no longer needed.

Chapter 9 - UIW_ICON 211

WOF_NO_FLAGS—Does not associate any special window flags with the
object. Setting this flag left-justifies the data. This flag should not be used in
conjunction with any other WOF flags.

WOF_NON_FIELD_REGION—Causes the object to ignore its position and
size parameters and use the remaining available space in its parent object.

WOF_NON_SELECTABLE—Prevents the object from being selected. If this
flag is set, the user will not be able to position on nor select the icon. This flag
is set by default in the constructor.

• userFunctionin is a programmer defined function that will be called by the library at
certain points in the user's interaction with an object. The user function will be
called by the library when:

1—the user moves onto the field,

2—the <ENTER> key is pressed while the icon is current, if the mouse is
clicked on the object or, if the icon has the ICF_DOUBLE_CLICK flag set, the
user double-clicks on the icon,

3—the user moves to a different field in the window or to a different window.

Because the user function is called at these times, the programmer can do data
validation or any other type of necessary operation. The definition of the
userFunction is as follows:

EVENT_TYPE FunctionName(UI_WINDOW_OBJECT *object,
UI_EVENT &event, EVENT_TYPE ccode);

returnValueout indicates if an error has occurred. returnValue should be 0 if the
no error occurred. Otherwise, the programmer should call the error system with
an appropriate error message and return -1.

objectin is a pointer to the object for which the user function is being called.
This argument must be typecast by the programmer if class-specific members
need to be accessed.

eventin is the run-time message passed to the object.

212 OpenZinc Application Framework—Programmer's Reference Volume 2

ccodein is the logical or system code that caused the user function to be called.
This code (declared in UI_EVT.HPP) will be one of the following constant
values:

L_DOUBLE_CLICK—The icon has the ICF_DOUBLE_CLICK flag set
and the user double-clicked on the icon.

L_SELECT—The <ENTER> key was pressed while the field was current,
or the button was clicked on with the mouse.

S_CURRENT—The object just received focus because the user moved to
it from another field or window. This code is sent before any editing
operations are permitted.

S_NON_CURRENT—The object just lost focus because the user moved to
another field or window.

Example
#include <ui_win.hpp>

main() {

UI_WINDOW_OBJECT::defaultStorage = new ZIL_STORAGE("resource.dat");

// Attach the icon to a window.
UIW_WINDOW *window = new UIW_WINDOW(0, 0, 40, 10);
*window

+ new UIW_BORDER
+ new UIW_MAXIMIZE_BUTTON
+ new UIW_MINIMIZ E_BUTTON
+ new UIW_SYSTEM_BUTTON
+ new UIW_TITLE("Example Icons", WOF_JUSTIFY_CENTER)
+ new UIW_ICON(0, 0, "minlcon", NULL, ICF_MINIMIZE_OBJECT)
+ new UIW_ICON(7, 3, "iconLogo", "Box Logo");

*windowManager + window;

delete UI_WINDOW_OBJECT::defaultStorage;

}

Chapter 9 - UIW_ICON 213

UIW_ICON::~UIW_ICON

Syntax

#include <ui_win.hpp>

virtual ~UIW_ICON(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This virtual destructor destroys the class information associated with the UIW_ICON
object.

UIW_ICON::ClassName

Syntax

#include <ui_win.hpp>

virtual ZIL_ICHAR *ClassName(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows
• Macintosh • OSF/Motif • Curses

Remarks

This virtual function returns the object's class name.

214 OpenZinc Application Framework—Programmer's Reference Volume 2

• OS/2
• NEXTSTEP

• returnValueout is a pointer to _className.

UIW_ICON::DataGet

Syntax

#include <ui_win.hpp>

ZIL_ICHAR *DataGet(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks

This function is used to return the text information associated with the icon object.

• returnValueout is a pointer to the icon's text string.

Example
#include <ui_win.hpp>

ExampleFunction(UIW_ICON *iconObject)
{

ZIL_ICHAR *text = iconObject->DataGet();

}

Chapter 9 - UIW_ICON 215

UIW_ICON::DataSet

Syntax
#include <ui_win.hpp>

void DataSet(ZIL_ICHAR "text);

Portability

• OS/2
• NEXTSTEP

Remarks

This function is used to set the text information associated with the icon object.

• textin is a pointer to the new text string.

Example
#include <ui_win.hpp>

ExampleFunction(UIW_ICON *icon) {

ZIL_ICHAR text[] = *file";
icon->DataSet(text);

}

UIW_ICON::Drawltem

Syntax
#include <ui_win.hpp>

virtual EVENT_TYPE DrawItem(const UI_EVENT &event, EVENT_TYPE ccode);

This function is available on the following environments:

• DOS Text • DOS Graphics • Windows
• Macintosh • OSF/Motif • Curses

216 OpenZinc Application Framework—Programmer's Reference Volume 2

Portability
This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics • Windows
• OSF/Motif • Curses

• OS/2
• NEXTSTEP

Remarks
This virtual advanced function is used to draw the object. If the WOS_OWNERDRAW
status is set for the object, this function will be called when drawing the icon. This
allows the programmer to derive a new class from UIW_ICON and handle the drawing
of the icon, if desired.

• returnValueout is a response based on the success of the function call. If the object
is drawn the function returns a non-zero value. If the object is not drawn, 0 is

• eventin contains the run-time message that caused the object to be redrawn.
event.region contains the region in need of updating. The following logical events
may be sent to the Drawltem() function:

S_CURRENT, S_NON_CURRENT, S_DISPLAY_ACTIVE and S_DIS-
PLAY_INACTIVE—Messages that cause the object to be redrawn.

WM_DRAWITEM—A message that causes the object to be redrawn. This
message is specific to Windows and OS/2.

Expose—A message that causes the object to be redrawn. This message is
specific to Motif.

• ccodein contains the logical interpretation of event.

returned.

UIW_ICON::Event

Syntax
#include <ui_win.hpp>

virtual EVENT_TYPE Event(const UI_EVENT &event);

Chapter 9 - UIW_ICON 217

Portability
This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics • Windows
• OSF/Motif • Curses

• OS/2
• NEXTSTEP

Remarks
This function processes run-time messages sent to the icon object. It is declared virtual
so that any derived icon class can override its default operation.

• returnValueout indicates how event was processed. If the event is processed
successfully, the function returns the logical type of event that was interpreted from
event. If the event could not be processed, S_UNKNOWN is returned.

• eventin contains a run-time message for the icon object. The type of operation
performed depends on the interpretation of the event. The following logical events
are processed by Event():

L_BEGIN_SELECT—Indicates that the end-user began the selection of the
object by pressing the mouse button down while on the object.

L_DOUBLE_CLICK—Indicates that the object was double-clicked. If the
ICF_DOUBLE_CLICK flag is set, the icon's user function will be called.

L_END_SELECT—Indicates that the selection process, initiated with the L_-
BEGIN_SELECT message, is complete. For example, the end-user has pressed
and released the mouse button. The user function will be called.

L_SELECT—Indicates that the object has been selected. The selection may be
the result of a mouse click or a keyboard action.

S_CHANGED—Causes the object to recalculate its position and size. When a
window is moved or sized, the objects on the window will need to recalculate
their positions. This message informs an object that it has changed and that it
should update itself.

S_CREATE—Causes the object to create itself. The object will calculate its
position and size and, if necessary, will register itself with the operating system.
This message is sent by the Window Manager when a window is attached to it

218 OpenZinc Application Framework—Programmer's Reference Volume 2

to cause the window and all the objects attached to the window to determine
their positions.

S_CURRENT—Informs the object that it has become current. Typically, the
object draws itself to appear current. This message is sent by the Window
Manager to a window when it becomes current. The window, in turn, passes this
message to the object on the window that is current.

S_DEINITIALIZE—Informs the object that it is about to be removed from the
application and that it should deinitialize any information. The Window Manager
sends this message to a window when the window is subtracted from the
Window Manager. The window, in turn, relays the message to all objects
attached to it.

S_DISPLAY_ACTIVE—Causes the object to draw itself to appear active. An
active object is one that is on the active (i.e., current) window. Most objects do
not display differently whether they are active or inactive. An active object
should not be confused with a current object. An object is active if it is on the
active window. However, it may not be the current object on the window.

The region that needs to be redisplayed is passed in the UI_REGION portion of
the UI_EVENT structure when this message is sent. The object only needs to
redisplay when the region passed by the event overlaps the region of the object.
This message is sent by a UIW_WINDOW to all the non-current, active objects
attached to it.

S_DISPLAY_INACTIVE—Causes the object to draw itself to appear inactive.
An inactive object is one that is not on the active (i.e., current) window. Most
objects do not display differently whether they are inactive or active.

The region that needs to be redisplayed is passed in the UI_REGION portion of
the UI_EVENT structure when this message is sent. The object only needs to
redisplay when the region passed with the event overlaps the region of the object.
This message is sent by a UIW_WINDOW to all the objects attached to it.

S_INITIALIZE—Causes the object to initialize any necessary information that
may require a knowledge of its parent or siblings. When a window is added to
the Window Manager, the Window Manager sends this message to cause the
window and all the objects attached to the window to initialize themselves.

S_NON_CURRENT—Indicates that the object has just become non-current.
This message is received when the user moves to another field or window.

Chapter 9 - UIW_ICON 219

S_REDISPLAY—Causes the object to redraw.

S_REGION_DEFINE—Causes the object to reserve a region of the screen in
which it will display.

S_REGISTER_OBJECT—Causes the object to register itself with the operating
system.

S_RESET_DISPLAY—Changes the display to a different resolution, event.data
should point to the new display class to be used. If event.data is NULL, a text
mode display will be created. This event is specific to DOS and must be placed
on the event queue by the programmer. The library will never generate this
event.

All other events are passed by Event() to UI_WINDOW_OBJECT::Event() for
processing.

UIW_ICON::lnformation

Syntax
#include <ui_win.hpp>

virtual void *Information(ZIL_INFO_REQUEST request, void *data,
ZIL_OBJECTID objectID = ID_DEFAULT);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function allows OpenZinc Application Framework objects and programmer functions to
get or modify specified information about an object.

220 OpenZinc Application Framework—Programmer's Reference Volume 2

• returnValueout is a pointer to the return data that was requested. The type of the
return data depends on the request. If the request did not require the return of
information, this value is NULL.

• requestin is a request to get or set information associated with the object. The
following requests (defined in UI_WIN.HPP) are recognized by the icon:

I_CHANGED_FLAGS—Informs the object that the programmer has changed
some flags associated with the object and that the object should update itself
accordingly. This request should be sent after changing an object's flags,
particularly if the new flag settings will change the visual appearance of the
object.

I_CLEAR_FLAGS—Clears the current flag settings for the object. If this
request is sent, data should be a pointer to a variable of type UIF_FLAGS that
contains the flags to be cleared, and objectID should indicate the type of object
with which the flags are associated. For example, if the programmer wishes to
clear the WOF_FLAGS of an object, objectID should be ID_WINDOW_-
OBJECT. If the ICF_FLAGS are to be cleared, objectID should be ID_ICON.
This allows the object to process the request at the proper level. This request
only clears those flags that are passed in; it does not simply clear the entire field.

I_COPY_TEXT—Copies the text associated with the object into a buffer
provided by the programmer. If this request is sent, data must be the address of
a buffer where the string's text will be copied. This buffer must be large enough
to contain all of the characters associated with the button and the terminating
NULL character.

I_GET_FLAGS—Requests the current flag settings for the object. If this
request is sent, data should be a pointer to a variable of type UIF_FLAGS, and
objectID should indicate the type of object with which the flags are associated.
For example, if the programmer wishes to obtain the WOF_FLAGS of an object,
objectID should be ID_WINDOW_OBJECT. If the ICF_FLAGS are desired,
objectID should be ID_ICON. This allows the object to process the request at
the proper level.

I_GET_ICON_ARRAY—Returns a pointer to the icon's image array. If an
icon image does not exist, NULL is returned. If this message is sent, data must
be a pointer to a variable of type ZIL_UINT8. This request does not copy the
image into a new buffer.

Chapter 9 - UIW_ICON 221

I_GET_TEXT—Returns a pointer to the text associated with the object. If this
request is sent, data should be a doubly-indirected pointer to ZIL_ICHAR. This
request does not copy the text into a new buffer.

I_INITIALIZE_CLASS—Causes the object to initialize any basic information
that does not require a knowledge of its parent or sibling objects. This request
is sent from the constructor of the object.

I_SET_ICON_ARRAY—Sets the icon image array associated with the icon.
If this message is sent, data must be a pointer to an array of ZIL_UINT8 that
contains the icon's new image.

I_SET_FLAGS—Sets the current flag settings for the object. If this request is
sent, data should be a pointer to a variable of type UIF_FLAGS that contains the
flags to be set, and objectID should indicate the type of object with which the
flags are associated. For example, if the programmer wishes to set the WOF_-
FLAGS of an object, objectID should be ID_WINDOW_OBJECT. If the ICF_-
FLAGS are to be set, objectID should be ID_ICON. This allows the object to
process the request at the proper level. This request only sets those flags that are
passed in; it does not clear any flags that are already set.

I_SET_TEXT—Sets the text associated with the object. This request will also
redisplay the object with the new text, data should be a pointer to the new text.

All other requests are passed by Information() to UI_WINDOW_OBJECT::-
Information() for processing.

• datain/out is used to provide information to the function or to receive the information
requested, depending on the type of request. In general, this must be space allocated
by the programmer.

• objectIDin is a ZIL_OBJECTID that specifies which type of object the request is
intended for. Because the Information() function is virtual, it is possible for an
object to be able to handle a request at more than one level of its inheritance
hierarchy. objectID removes the ambiguity by specifying which level of an object's
hierarchy should process the request. If no value is provided for objectID, the object
will attempt to interpret the request with the objectID of the actual object type.

222 OpenZinc Application Framework—Programmer's Reference Volume 2

Example
#include <ui_win.hpp>

ExampleFunction() {
UIW_ICON *icon, *iconl, *icon2;

char string[30];
icon->Information(I_COPY_TEXT, string);
iconl->Information(I_SET_TEXT, "Clock");
icon2->Information(I_SET_TEXT, "Phone Book");

}

Storage Members

This section describes those class members that are used for storage purposes.

UIW_ICON::UIW_ICON

Syntax
#include <ui_win.hpp>

UIW_ICON(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object,
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced constructor creates a new UIW_ICON by loading the object from a data
file. Typically, the programmer does not need to use this constructor. If an icon is stored

Chapter 9 - UIW_ICON 223

in a data file it is usually stored as part of a UIW_WINDOW and will be loaded when
the window is loaded.

• namein is the name of the object to be loaded.

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT:.objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT:. userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

UIW_ICON::Load

Syntax
#include <ui_win.hpp>

virtual void Load(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

224 OpenZinc Application Framework—Programmer's Reference Volume 2

Portability
This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics • Windows
• OSF/Motif • Curses

• OS/2
• NEXTSTEP

Remarks
This advanced function is used to load a UIW_ICON from a persistent object data file.
It is called by the persistent constructor and is typically not used by the programmer.

• namein is the name of the object to be loaded.

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY'' of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT:.objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT:. userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

Chapter 9 - UIW_ICON 225

UIW_ICON::New

Syntax
#include <ui_win.hpp>

static UI_WINDOW_OBJECT *New(const ZIL_ICHAR *name,
ZIL_STORAGE_READ_ONLY *file =

ZIL_NULLP(ZIL_STORAGE_READ_ONLY),
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY),
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced function is used to load a persistent object from a data file. This function
is a static class member so that its address can be placed in a table used by the library to
load persistent objects from a data file.

NOTE: The application must first create a display if objects are to be loaded from a data
file.

• namein is the name of the object to be loaded.

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OB JECT_READ_ONLY" of Programmer's Reference Volume
1.

226 OpenZinc Application Framework—Programmer's Reference Volume 2

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT::objectTable in "Chapter 43—UIJWIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT::userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

UIW_ICON::NewFunction

Syntax
#include <ui_win.hpp>

virtual ZIL_NEW_FUNCTION NewFunction(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows
• Macintosh • OSF/Motif • Curses

Remarks
This virtual function returns a pointer to the object's New() function.

• returnValueout is a pointer to the object's New() function.

• OS/2
• NEXTSTEP

Chapter 9 - UIW_ICON 227

UIW_ICON::Store

Syntax
#include <ui_win.hpp>

virtual void Store(const ZIL_ICHAR *name, ZIL_STORAGE *file,
ZIL_STORAGE_OBJECT *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced function is used to write an object to a data file.

• namein is the name of the object to be stored.

• filein is a pointer to the ZIL_STORAGE where the persistent object will be stored.
For more information on persistent object files, see "Chapter 66—ZIL_STORAGE"
of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT where the persistent object
information will be stored. This must be allocated by the programmer. For more
information on loading persistent objects, see "Chapter 68—ZIL_STORAGE_-
OBJECT" of Programmer's Reference Volume 1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT:.objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the

228 OpenZinc Application Framework—Programmer's Reference Volume 2

description of UI_WINDOW_0BJECT::userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

Chapter 11 - UIW_MAXIMIZE_BUTTON 229

OpenZinc Application Framework—Programmer's Reference Volume 2 230

CHAPTER 10 - UIW_INTEGER

The UIW_INTEGER class is used to display numeric information and to collect
information, in integer form, from an end-user. The UIW_INTEGER class supports
integer values only. If larger values are required or if any formatting is necessary (e.g.,
currency symbols) the UIW_BIGNUM object should be used. The figure below shows
the graphical implementation of a window with several variations of the UIW_INTEGER
class object:

The UIW_INTEGER class is declared in UI_WIN.HPP. Its public and protected
members are:

class ZIL_EXPORT_CLASS UIW_INTEGER : public UIW_STRING
{
public:

static ZIL_ICHAR _className[];
static int defaultlnitialized;
NMF_FLAGS nmFlags;
UIW_INTEGER(int left, int top, int width, int *value,

const ZIL_ICHAR *range = ZIL_NULLP(ZIL_ICHAR),
NMF_FLAGS nmFlags = NMF_NO_FLAGS,
WOF_FLAGS woFlags = WOF_BORDER | WOF_AUTO_CLEAR,
ZIL_USER_FUNCTION userFunction = ZIL_NULLF(ZIL_USER_FUNCTION));

virtual ~UIW_INTEGER(void);
virtual ZIL_ICHAR *ClassName(void);
int DataGet(void);
void DataSet(int *value);
virtual EVENT_TYPE Event(const UI_EVENT &event);
virtual void *Information(ZIL_INFO_REQUEST request, void *data,

ZIL_OBJECTID objectID = ID_DEFAULT);
virtual int Validatefint processError = TRUE);

#if defined (ZIL_LOAD)
virtual ZIL_NEW_FUNCTION NewFunction(void) ;
static UI_WINDOW_OBJECT *New(const ZIL_ICHAR *name,

ZIL_STORAGE_READ_ONLY *file = ZIL_NULLP(ZIL_STORAGE_READ_ONLY),

Chapter 10 - UIW_INTEGER 231

ZIL_STORAGE_OBJECT_READ_ONLY *object =
ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY),

UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

UIW_INTEGER(const ZIL_ICHAR *name, ZIL_3T0RAGE_READ_0NLY *flle,
ZIL_STORAGE_OBJECT_READ_ONLY *object,
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

virtual void Load(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

#endif
#if defined(ZIL_STORE)

virtual void Store(const ZIL_ICHAR *name, ZIL_STORAGE *file,
ZIL_STORAGE_OBJECT *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

#endif

void SetLanguage(const ZIL_ICHAR *languageName);

protected:
int *number;
ZIL_ICHAR *range;
const ZIL__LANGUAGE *myLanguage; } ;

General Members

This section describes those members that are used for general purposes.

• _className contains a string identifying the class. The string is always the same
name as the class, is always in English, and never changes. For example, for the

UIW_INTEGER class, _className is "UIW_INTEGER."

• defaultlnitialized indicates if the default language strings for this object have been set
up. The default strings are located in the file LANG J)EF.CPP. If defaultlnitialized
is TRUE, the strings have been set up. Otherwise they have not been.

• nmFlags are flags that define the operation of the UIW_INTEGER class. A full
description of the number flags is given in the UIW_INTEGER constructor.

• number is used to store the integer value for UIW_INTEGER. If the WOF_NO_-
ALLOCATE_DATA flag is set, number will simply point to the value that was
passed in the constructor.

• range is a string that specifies the range(s) of acceptable integer values, range is a
copy of the range that is passed to the constructor.

• myLanguage is the ZIL_LANGUAGE object that contains the string translations for
this object.

232 OpenZinc Application Framework—Programmer's Reference Volume 2

UIW_INTEGER::UIW_INTEGER

Syntax
#include <ui_win.hpp>

UIW_INTEGER(int left, int top, int width, int *value,
const ZIL_ICHAR *range = ZIL_NULLP(ZIL_ICHAR),
NMF_FLAGS nmFlags = NMF_NO_FLAGS,
WOF_FLAGS woFlags = WOF_B ORDER | WOF_AUTO_CLEAR,
ZIL_USER_FUNCTION userFunction = ZIL_NULLF(ZIL_USER_FUNCTION));

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This constructor creates a new UIW_INTEGER class object.

• left i n and topin is the starting position of the integer field within its parent window.
Typically, these values are in cell coordinates. If the WOF_MINICELL flag is set,
however, these values will be interpreted as minicell values.

• widthin is the width of the integer field. Typically, this value is in cell coordinates.
If the WOF_MINICELL flag is set, however, this value will be interpreted as a
minicell value. The height of the integer field is determined automatically by the
UIW_INTEGER object.

• valuein is a pointer to the default numeric value. This value is copied into a buffer
allocated by the UIW_INTEGER object unless the WOF_NO_ALLOCATE_DATA
flag is set, in which case value is used.

• rangein is a string that specifies the valid numeric ranges. A range consists of a
minimum value, a maximum value, and the values in between. For example, if a
range of "1000.. 10000" is specified, the UIW_INTEGER class object will only
accept those numeric values that fall between 1,000 and 10,000, inclusive. Open-
ended ranges can be specified by leaving the minimum or maximum value off. For

Chapter 10 - UIW_INTEGER 233

example, a range of "500.." will allow all values that are 500 or greater. Multiple,
disjoint ranges can be specified by separating the individual ranges with a slash (i.e.
'/'). For example, "100..199/1000.." will accept all values from 100 to 199 and
values of 1000 or greater. If range is NULL, any number within the absolute range
is accepted. This string is copied by the UIW_INTEGER class object to the range
member variable.

• nmFlagsin describes how the integer should display and interpret the numeric
information. The following flags (declared in UI_GEN.HPP) control the general
presentation of a UIW_INTEGER class object:

NMF_NO_FLAGS—Does not associate any special flags with the number
object. This flag should not be used in conjunction with any other NMF flag.
This is the default argument in the constructor.

• woFlagsin are flags (common to all window objects) that determine the general
operation of the integer object. The following flags (declared in UI_WIN.HPP)
affect the operation of a UIW_INTEGER class object:

WOF_AUTO_CLEAR—Automatically marks the entire buffer if the end-user
tabs to the field from another object. If the user then enters data (without first
having pressed any movement or editing keys) the entire field will be replaced.
This flag is set by default in the constructor.

WOF_BORDER—Draws a border around the object. The graphical border's
appearance will depend on the operating system used, and, if in DOS, on the
graphics style being used. In text mode, a border may or may not be drawn,
depending on the text style being used. See "Appendix A—Support
Definitions" in this manual for information on changing DOS graphics mode
styles and text mode styles. This flag is set by default in the constructor.

WOFJNVALID—Sets the initial status of the field to be "invalid." Invalid
entries fit in the absolute range determined by the object type but do not fulfill
all the requirements specified by the program. For example, an integer may
initially be set to 200, but the final number, edited by the end-user, must be in
the range "10.. 100." The initial number in this example fits the absolute range
requirements of a UIW_INTEGER class object but does not fit into the specified
range. By denoting the field as invalid, you force the user to enter an acceptable
value.

WOF_JUSTIFY_CENTER—Center-justifies the data within the displayed field.

234 OpenZinc Application Framework—Programmer's Reference Volume 2

WOF_JUSTIFY_RIGHT—Right-justifies the data within the displayed field.

WOF_MINICELL—Causes the position and size values that were passed into
the constructor to be interpreted as minicells. A minicell is a fraction the size
of a normal cell. Greater precision in object placement is achieved by specifying
an object's position in minicell coordinates. A minicell is 1/1 Oth the size of a
normal cell by default.

WOF_NO_ALLOCATE_DATA—Prevents the object from allocating a buffer
to store the data. If this flag is set, the programmer is responsible for allocating
the memory for the data. The programmer is also responsible for deallocating
that memory when it is no longer needed.

WOF_NO_FLAGS—Does not associate any special window flags with the
object. Setting this flag left-justifies the data. This flag should not be used in
conjunction with any other WOF flags.

WOF_NON_FIELD_REGION—Causes the object to ignore its position and
size parameters and use the remaining available space in its parent object.

WOF_NON_SELECTABLE—Prevents the object from being selected. If this
flag is set, the user will not be able to position on nor edit the integer
information. Typically, the field will be drawn in such a manner as to appear
non-selectable (e.g., it may appear lighter than a selectable field).

WOF_SUPPORT_OBJECT—Causes the object to be placed in the parent
object's support list. The support list is reserved for objects that are not
displayed as part of the user region of the window. Care should be used when
setting this flag on an object that does not use it by default as undesirable effects
may occur. This flag generally should not be used by the programmer.

WOF_UNANSWERED—Sets the initial status of the field to be "unanswered."
An unanswered field is displayed as an empty field.

WOF_VIEW_ONLY—Prevents the object from being edited. However, the
object may become current and the user may scroll through the data, mark it, and
copy it.

• userFunctionin is a programmer defined function that will be called by the library at
certain points in the user's interaction with an object. The user function will be
called by the library when:

Chapter 10 - UIW_INTEGER 235

1—the user moves onto the field,

2—the <ENTER> key is pressed while the field is current or, if the field is in
a list, the mouse is clicked on it, or

3—the user moves to a different field in the window or to a different window.

Because the user function is called at these times, the programmer can do data
validation or any other type of necessary operation. The definition of the
userFunction is as follows:

EVENT_TYPE FunctionName(UI_WINDOW_OBJECT *object,
UI_EVENT &event, EVENT_TYPE ccode);

returnValueout indicates if an error has occurred. returnValue should be 0 if the
no error occurred. Otherwise, the programmer should call the error system with
an appropriate error message and return -1.

objectin is a pointer to the object for which the user function is being called.
This argument must be typecast by the programmer if class-specific members
need to be accessed.

eventin is the run-time message passed to the object.

ccodein is the logical or system code that caused the user function to be called.
This code (declared in UI_EVT.HPP) will be one of the following constant
values:

L_SELECT—The <ENTER> key was pressed while the field was current,
or, if the field is in a list, the mouse was clicked on the field.

S_CURRENT—The object just received focus because the user moved to
it from another field or window. This code is sent before any editing
operations are permitted.

S_NON_CURRENT—The object just lost focus because the user moved to
another field or window.

NOTE: If a user function is associated with the object, Validate() must be called
explicitly from within userFunction if range checking is desired.

236 OpenZinc Application Framework—Programmer's Reference Volume 2

Example
#include <ui_win.hpp>

ExampleFunction(UI_WINDOW_MANAGER *windowManager) {
// Create a window and add it to the window manager,
int iValue = 0;
UIW_WINDOW *window = new UIW_WINDOW(0, 0, 40, 10);
*window

+ new UIW_BORDER
+ new UIW_TITLE(" Sample numbers ")
+ new UIW_PROMPT(2, 1, "Integer:")
+ new UIW_INTEGER(12, 1, 20, &iValue, "0. .10000");

*windowManager + window;

// The integer will automatically be destroyed when the window
// is destroyed.

}

UIW_INTEGER::~UIW_INTEGER

Syntax

#include <ui_win.hpp>

virtual ~UIW_INTEGER(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This virtual destructor destroys the class information associated with the UIW_INTEGER
object.

Example
#include <ui_gen.hpp>

ExampleFunction() {

Chapter 10 - UIW_INTEGER 237

int number = 100;

UIW_INTEGER *integer = new UIW_INTEGER(1, 1, 20, &number);

delete integer;
}

UIW_INTEGER::ClassName

Syntax

#include <ui_win.hpp>

virtual ZIL_ICHAR *ClassName(void);

Portability

• OS/2
• NEXTSTEP

Remarks

This virtual function returns the object's class name.

• returnValueout is a pointer to _className.

UIW_INTEGER::DataGet

Syntax

#include <ui_win.hpp>

int DataGet(void);

This function is available on the following environments:

• DOS Text • DOS Graphics • Windows
• Macintosh • OSF/Motif • Curses

238 OpenZinc Application Framework—Programmer's Reference Volume 2

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function gets the current numeric information associated with the UIW_INTEGER
class object.

• returnValueout is the integer value.

Example
#include <ui_win.hpp>

ExampleFunction(UIW_INTEGER *integerObject) {
int value = integerObject->DataGet();

}

UIW_lNTEGER::DataSet

Syntax

#include <ui_win.hpp>

void DataSet(int "value);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows
• Macintosh • OSF/Motif • Curses

• OS/2
• NEXTSTEP

Chapter 10 - UIW_INTEGER 239

Remarks
This function assigns a new value to the UIW_INTEGER object and redisplays the field.
If no value is passed in (i.e., value is NULL), the field will be redrawn.

• valuein is a pointer to the new value. If the WOF_NO_ALLOCATE_DATA flag is
set, this argument must be an integer, allocated by the programmer, that is not
destroyed until the UIW_INTEGER class object is destroyed. Otherwise, the
information associated with this argument is copied by the UIW_INTEGER class
object. If this argument is NULL, no numeric information is changed, but the
number field is redisplayed.

Example
#include <ui_win.hpp>

ExampleFunction(UIW_INTEGER *number) {

int amount = 100;
number->DataSet(fcamount);

}

UIW_INTEGER::Event

Syntax
#include <ui_win.hpp>

virtual EVENT_TYPE Event(const UI_EVENT See verity,

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks

This function processes run-time messages sent to the integer object. It is declared virtual

240 OpenZinc Application Framework—Programmer's Reference Volume 2

so that any derived integer class can override its default operation.

• returnValueout indicates how event was processed. If the event is processed
successfully, the function returns the logical type of event that was interpreted from
event. If the event could not be processed, S_UNKNOWN is returned.

• eventin contains a run-time message for the integer object. The type of operation
performed depends on the interpretation of the event. The following logical events
are processed by Event():

L_SELECT—Indicates that the object has been selected. The selection may be
the result of a mouse click or a keyboard action.

S_CREATE—Causes the object to create itself. The object will calculate its
position and size and, if necessary, will register itself with the operating system.
This message is sent by the Window Manager when a window is attached to it
to cause the window and all the objects attached to the window to determine
their positions.

S_NON_CURRENT—Indicates that the object has just become non-current.
This message is received when the user moves to another field or window.

All other events are passed by Event() to UIW_STRING::Event() for processing.

UIW_INTEGER::Information

Syntax
#include <ui_win.hpp>

virtual void *Information(ZIL_INFO_REQUEST request, void *data,
ZIL_OBJECTID objectID = ID_DEFAULT);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Chapter 10 - UIW_INTEGER 241

Remarks
This function allows OpenZinc objects and programmer functions to get or modify specified
information about an object.

• returnValueout is a pointer to the return data that was requested. The type of the
return data depends on the request. If the request did not require the return of
information, this value is NULL.

• requestin is a request to get or set information associated with the object. The
following requests (defined in UI_WIN.HPP) are recognized by the integer:

I_CHANGED_FLAGS—Informs the object that the programmer has changed
some flags associated with the object and that the object should update itself
accordingly. This request should be sent after changing an object's flags,
particularly if the new flag settings will change the visual appearance of the
object.

I_DECREMENT_VALUE—Decrements the integer's value. If this message
is sent, data must be a pointer to an integer. The integer object's value will be
decremented by the value of data. The integer will not be modified if the new
value is not within the specified range.

I_GET_VALUE—Returns the value associated with the integer. If this message
is sent, data must be a pointer to a variable of type int where the integer's value
will be copied.

I_INCREMENT_VALUE—Increments the integer's value. If this message is
sent, data must be a pointer to an integer. The integer object's value will be
incremented by the value of data. The integer will not be modified if the new
value is not within the specified range.

I_INITIALIZE_CLASS—Causes the object to initialize any basic information
that does not require a knowledge of its parent or sibling objects. This request
is sent from the constructor of the object.

I_SET_VALUE—Sets the value associated with the integer. If this message is
sent, data must be a pointer to a variable of type int that contains the integer's
new value.

All other requests are passed by Information() to UIW_STRING::Information()
for processing.

242 OpenZinc Application Framework—Programmer's Reference Volume 2

• datain/out is used to provide information to the function or to receive the information
requested, depending on the type of request. In general, this must be space allocated
by the programmer.

• objectIDin is a ZIL_OBJECTID that specifies which type of object the request is
intended for. Because the Information() function is virtual, it is possible for an
object to be able to handle a request at more than one level of its inheritance
hierarchy. objectID removes the ambiguity by specifying which level of an object's
hierarchy should process the request. If no value is provided for objectID, the object
will attempt to interpret the request with the objectID of the actual object type.

UIW_INTEGER::SetLanguage

Syntax
#include <ui_win.hpp>

void SetLanguage(const ZIL_ICHAR *languageName);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function sets the language to be used by the object. The string translations for the
object will be loaded and the object's myLanguage member will be updated to point to
the new ZIL_LANGUAGE object. By default, the object uses the language identified in
the LANG_DEF.CPP file, which compiles into the library. (If a different default
language is desired, simply copy a LANG_<ISO>.CPP file from the OpenZinc\SOURCE\-
INTL directory to the \OpenZinc\SOURCE directory, and rename it to LANG_DEF.CPP
before compiling the library.) The language translations are loaded from the I18N.DAT
file, so it must be shipped with your application.

• languageNamein is the two-letter ISO language code identifying which language the
object should use.

Chapter 10 - UIW_INTEGER 243

UIW_INTEGER::Validate

Syntax
#include <ui_win.hpp>

virtual int Validate(int processError = TRUE);

Portability
This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics • Windows
• OSF/Motif • Curses

• OS/2
• NEXTSTEP

Remarks
This function is used to validate objects. When an object receives the S_CURRENT or
S_NON_CURRENT messages, it calls Validate() to check if the value entered is valid.
However, if a user function is associated with the object, Validate() must be called
explicitly from the user function if range checking is desired. The value is invalid if it
is not within the absolute range of the object or if it is not within a range specified by the
range member variable.

• returnValueout indicates the result of the validation. The possible values for
returnValue are:

NMI_GREATER_THAN_RANGE—The number entered was greater than the
maximum value of a negatively open-ended range.

NMI_INVALID—The number was entered in an incorrect format.

NMI_LESS_THAN_RANGE—The number entered was less than the minimum
value of a positively open-ended range.

NMI_OK—The number was entered in a correct format and within the valid
ranges.

NMI_OUT_OF_RANGE—The number was not within the valid range for
numbers or was not within the specified range.

244 OpenZinc Application Framework—Programmer's Reference Volume 2

• processErrorin determines whether Validate() should call UI_ERROR_SYSTEM::-
ReportError() if an error occurs. If processError is TRUE, ReportError() is
called. Otherwise, the error system is not called.

Storage Members

This section describes those class members that are used for storage purposes.

UIW_INTEGER::UIW_INTEGER

Syntax
#include <ui_win.hpp>

UIW_INTEGER(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object,
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced constructor creates a new UIW_INTEGER by loading the object from a
data file. Typically, the programmer does not need to use this constructor. If an integer
is stored in a data file it is usually stored as part of a UIW_WINDOW and will be loaded
when the window is loaded.

• namein is the name of the object to be loaded.

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

Chapter 10 - UIW_INTEGER 245

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT::objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT::userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

UIW_INTEGER::Load

Syntax
#include <ui_win.hpp>

virtual void Load(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced function is used to load a UIW_INTEGER from a persistent object data

246 OpenZinc Application Framework—Programmer's Reference Volume 2

file. It is called by the persistent constructor and is typically not used by the programmer.

• namein is the name of the object to be loaded.

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT:.objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT:. userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

UIW_INTEGER::New

Syntax
#include <ui_win.hpp>

static UI_WINDOW_OBJECT *New(const ZIL_ICHAR *name,
ZIL_STORAGE_READ_ONLY *file =

ZIL_NULLP(ZIL_STORAGE_READ_ONLY),
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY),
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

Chapter 10 - UIW_INTEGER 247

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced function is used to load a persistent object from a data file. This function
is a static class member so that its address can be placed in a table used by the library to
load persistent objects from a data file.

NOTE: The application must first create a display if objects are to be loaded from a data
file.

• namein is the name of the object to be loaded.

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT:.objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT:. userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

248 OpenZinc Application Framework—Programmer's Reference Volume 2

UIW_INTEGER::NewFunction

Syntax
#include <ui_win.hpp>

virtual ZIL_NEW_FUNCTION NewFunction(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks

This virtual function returns a pointer to the object's New() function.

• returnValueout is a pointer to the object's New() function.

UIW_INTEGER::Store

Syntax
#include <ui_win.hpp>

virtual void Store(const ZIL_ICHAR *name, ZIL_STORAGE *file,
ZIL_STORAGE_OBJECT *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows
• Macintosh • OSF/Motif • Curses

• OS/2
• NEXTSTEP

Chapter 10 - UIW_INTEGER 249

Remarks
This advanced function is used to write an object to a data file.

• namein is the name of the object to be stored.

• filein is a pointer to the ZIL_STORAGE where the persistent object will be stored.
For more information on persistent object files, see "Chapter 66—ZIL_STORAGE"
of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT where the persistent object
information will be stored. This must be allocated by the programmer. For more
information on loading persistent objects, see "Chapter 68—ZIL_STORAGE_-
OBJECT" of Programmer's Reference Volume 1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT:.objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT:. userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

250 OpenZinc Application Framework—Programmer's Reference Volume 2

CHAPTER 11 - UIW_MAXIMIZE_BUTTON

The UIW_MAXIMIZE_BUTTON class is used to maximize a window. A maximized
window fills the whole screen if it is attached to the Window Manager. If a window is
an MDI child window, it fills the client area of its MDI parent window when maximized.
When a window has been maximized, the maximize button becomes a restore button. If
the restore button is selected, the window will return to its normal size. The figure below
shows a graphical implementation of a window with a UIW_MAXIMIZE_BUTTON class
object (the button with the character):

NOTE: The Macintosh does not allow maximizing, as such. Instead, the Macintosh has
a zoom box, which allows the end-user to toggle the window size between two different
sizes. The zoom box is created in place of the maximize button in a Macintosh
application built using OpenZinc.

The UIW_MAXIMIZE_BUTTON class is declared in UI_WIN.HPP. Its public and
protected members are:

class ZIL_EXPORT_CLASS UIW_MAXIMIZE_BUTTON : public UIW_BUTTON
{
public:

static ZIL_ICHAR _className[];
static int defaultlnitialized;

UIW_MAXIMIZE_BUTTON(void);
virtual ~UIW_MAXIMIZE_BUTTON(void);
virtual ZIL_ICHAR *ClassName(void);
virtual EVENT_TYPE Event(const UI_EVENT &event);
virtual void *Information(ZIL_INFO_REQUEST request, void *data,

ZIL_OBJECTID objectID = ID_DEFAULT);

#if defined(ZIL_LOAD)

Chapter 11 - UIW_MAXIMIZE_BUTTON 251

virtual ZIL_NEW_FUNCTION NewFunction(void);
static UI_WINDOW_OBJECT *New(const ZIL_ICHAR *name,

ZIL_STORAGE_READ_ONLY *file = ZIL_NULLP(ZIL_STORAGE_READ_ONLY),
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY),
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

UIW_MAXIMIZE_BUTTON(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object,
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

virtual void Load(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

#endif
#if defined(ZIL_STORE)

virtual void Store(const ZIL_ICHAR *name, ZIL_STORAGE *file,
ZIL_STORAGE_OBJECT *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

#endif

void SetDecorations(const ZIL_ICHAR *decorationName);

protected:
const ZIL_DECORATION *myDecorations;

} ;

General Members

This section describes those members that are used for general purposes.

• _className contains a string identifying the class. The string is always the same
name as the class, is always in English, and never changes. For example, for the
UIW_MAXIMIZE_BUTTON class, _className is "UIW_MAXIMIZE_BUTTON."

• defaultlnitialized indicates if the default decorations (i.e., images) for this object have
been set up. The default decorations are located in the file IMG_DEF.CPP. If
defaultlnitialized is TRUE, the decorations have been set up. Otherwise they have
not been.

• myDecorations is the ZIL_DECORATION object that contains the images for this
object.

252 OpenZinc Application Framework—Programmer's Reference Volume 2

UIW_MAXIMIZE_BUTTON::UIW_MAXIMIZE_BUTTON

Syntax
#include <ui_win.hpp>

UIW_MAXIMIZE_BUTTON(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This constructor creates a new UIW_MAXIMIZE_BUTTON class object. The maximize
button object is always positioned in the upper right corner of the parent window. To
ensure that the maximize button is drawn correctly, it must be added right after the UIW_-
BORDER class object. The following example shows the correct order of maximize
button addition.

Example
#include <ui_win.hpp>

ExampleFunction(UI_WINDOW_MANAGER *windowManager)
{

// Create a window and attach it to the window manager.
UIW_WINDOW *window = new UIW_WINDOW(0, 0, 40, 10);
*window

+ new UIW_BORDER
+ new UIW_MAXIMIZE_BUTTON
+ new UIW_MINIMIZE_BUTTON
+ new UIW_SYSTEM_BUTTON
+ new UIW_TITLE("Window 1");

*windowManager + window;

// The maximize button will automatically be destroyed when the window
// is destroyed.

}

Chapter 11 - UIW_MAXIMIZE_BUTTON 253

UIW_MAXIMIZE_BUTTON::~UIW_MAXIMIZE_BUTTON

Syntax
#include <ui_win.hpp>

virtual ~UIW_MAXIMIZE_BUTTON(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This virtual destructor destroys the class information associated with the UIW_MAX-
IMIZE_BUTTON object.

UIW_MAXIMIZE_BUTTON::ClassName

Syntax

#include <ui_win.hpp>

virtual ZIL_ICHAR *ClassName(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows
• Macintosh • OSF/Motif • Curses

Remarks

This virtual function returns the object's class name.

254 OpenZinc Application Framework—Programmer's Reference Volume 2

• os/2
• NEXTSTEP

• returnValueout is a pointer to _className.

UIW_MAXIMIZE_BUTTON::Event

Syntax
#include <ui_win.hpp>

virtual EVENT_TYPE Event(const UI_EVENT &event);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function processes run-time messages sent to the maximize button object. It is
declared virtual so that any derived maximize button class can override its default
operation.

• returnValueout indicates how event was processed. If the event is processed
successfully, the function returns the logical type of event that was interpreted from
event. If the event could not be processed, S_UNKNOWN is returned.

• eventin contains a run-time message for the maximize button object. The type of
operation performed depends on the interpretation of the event. The following logical
events are processed by Event():

L_BEGIN_SELECT—Indicates that the end-user pressed the mouse button
down. This begins the selection process of an object. This event is interpreted
from an event generated by the mouse device.

L_CONTINUE_SELECT—Indicates that the end-user previously clicked down
on the object with the mouse and is now continuing to hold the mouse button
down while on the object.

Chapter 11 - UIW_MAXIMIZE_BUTTON 255

S_CHANGED—Causes the object to recalculate its position and size. When a
window is moved or sized, the objects on the window will need to recalculate
their positions. This message informs an object that it has changed and that it
should update itself.

S_CREATE—Causes the object to create itself. The object will calculate its
position and size and, if necessary, will register itself with the operating system.
This message is sent by the Window Manager when a window is attached to it
to cause the window and all the objects attached to the window to determine
their positions.

S_INITIALIZE—Causes the object to initialize any necessary information that
may require a knowledge of its parent or siblings. When a window is added to
the Window Manager, the Window Manager sends this message to cause the
window and all the objects attached to the window to initialize themselves.

All other events are passed by Event() to UIW_BUTTON::Event() for processing.

NOTE: Because most graphical operating systems already process their own events
related to this object, the messages listed above may not be handled in every
environment. Wherever possible, OpenZinc allows the operating system to process its own
messages so that memory use and speed will be as efficient as possible. In these
situations, the system event can be trapped in a derived Event() function.

UIW_MAXIMIZE_BUTTON::lnformation

Syntax
#include <ui_win.hpp>

virtual void *Information(ZIL_INFO_REQUEST request, void *data,
ZIL_OB JECTID objectID = ID_DEFAULT);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

256 OpenZinc Application Framework—Programmer's Reference Volume 2

Remarks
This function allows OpenZinc Application Framework objects and programmer functions to
get or modify specified information about an object.

• returnValueout is a pointer to the return data that was requested. The type of the
return data depends on the request. If the request did not require the return of
information, this value is NULL.

• requestin is a request to get or set information associated with the object. The
following requests (defined in UI_WIN.HPP) are recognized by the maximize button:

I_CHANGED_FLAGS—Informs the object that the programmer has changed
some flags associated with the object and that the object should update itself
accordingly. This request should be sent after changing an object's flags,
particularly if the new flag settings will change the visual appearance of the
object.

I_INITIALIZE_CLASS—Causes the object to initialize any basic information
that does not require a knowledge of its parent or sibling objects. This request
is sent from the constructor of the object.

All other requests are passed by Information() to UIW_BUTTON::Information()
for processing.

• datain/out is used to provide information to the function or to receive the information
requested, depending on the type of request. In general, this must be space allocated
by the programmer.

• objectIDin is a ZIL_OBJECTID that specifies which type of object the request is
intended for. Because the Information() function is virtual, it is possible for an
object to be able to handle a request at more than one level of its inheritance
hierarchy. objectID removes the ambiguity by specifying which level of an object's
hierarchy should process the request. If no value is provided for objectID, the object
will attempt to interpret the request with the objectID of the actual object type.

Chapter 11 - UIW_MAXIMIZE_BUTTON 257

UIW_MAXIMIZE_BUTTON::SetDecorations

Syntax
#include <ui_win.hpp>

void SetDecorations(const ZIL_ICHAR *decorationName);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function sets the decorations (i.e., images) to be used by the object. The images for
the object will be loaded and the object's myDecorations member will be updated to point
to the new ZIL_DECORATION object. By default, the object uses the images identified
in the IMG_DEF.CPP file, which compiles into the library. (If different default images
are desired, simply copy a IMG_<ISO>.CPP file from the OpenZinc\SOURCE\INTL
directory to the \OpenZinc\SOURCE directory, and rename it to IMG_DEF.CPP before
compiling the library.) The images are loaded from the I18N.DAT file, so it must be
shipped with your application.

• decorationNamein is the two-letter ISO country code identifying which images the
object should use.

Storage Members

This section describes those class members that are used for storage purposes.

258 OpenZinc Application Framework—Programmer's Reference Volume 2

UIW_MAXIMIZE_BUTTON::UIW_MAXIMIZE_BUTTON

Syntax
#include <ui_win.hpp>

UIW_MAXIMIZE_BUTTON(const ZIL_ICHAR *name,
ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object,
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced constructor creates a new UIW_MAXIMIZE J3UTTON by loading the
object from a data file. Typically, the programmer does not need to use this constructor.
If a maximize button is stored in a data file it is usually stored as part of a UIW_-
WINDOW and will be loaded when the window is loaded.

• namein is the name of the object to be loaded.

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_W1NDOW JOB JECT:-.objectTable in "Chapter 43—UI_WIN-

Chapter 11 - UIW_MAXIMIZE_BUTTON 259

DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions, and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT::userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

UIW_MAXIMIZE_BUTTON::Load

Syntax
#include <ui_win.hpp>

virtual void Load(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced function is used to load a UIW_MAXIMIZE_BUTTON from a persistent
object data file. It is called by the persistent constructor and is typically not used by the
programmer.

• namein is the name of the object to be loaded.

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

260 OpenZinc Application Framework—Programmer's Reference Volume 2

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT:.objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions, and compare functions. For more details about userTable see the
description of UIJWINDOWJOB JECT:-.userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

UIW_MAXIMIZE_BUTTON::New

Syntax
#include <ui_win.hpp>

static UI_WINDOW_OBJECT *New(const ZIL_ICHAR *name,
ZIL_STORAGE_READ_ONLY *file =

ZIL_NULLP(ZIL_STORAGE_READ_ONLY),
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY),
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Chapter 11 - UIW_MAXIMIZE_BUTTON 261

Remarks
This advanced function is used to load a persistent object from a data file. This function
is a static class member so that its address can be placed in a table used by the library to
load persistent objects from a data file.

NOTE: The application must first create a display if objects are to be loaded from a data
file.

• namein is the name of the object to be loaded.

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT:.-objectTable in "Chapter 43—UI.WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions, and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT:. userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

UIW_MAXIMIZE_BUTTON::NewFunction

Syntax
#include <ui_win.hpp>

virtual ZIL_NEW_FUNCTION NewFunction(void);

262 OpenZinc Application Framework—Programmer's Reference Volume 2

Portability
This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics • Windows
• OSF/Motif • Curses

• OS/2
• NEXTSTEP

Remarks
This virtual function returns a pointer to the object's New() function.

returnValueout is a pointer to the object's New() function.

UIW MAXIMIZE BUTTON::Store

Syntax
#include <ui_win.hpp>

virtual void Store(const ZIL_ICHAR *name, ZIL_STORAGE *file,
ZIL_STORAGE_OBJECT *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced function is used to write an object to a data file.

• namein is the name of the object to be stored.

• filein is a pointer to the ZIL_STORAGE where the persistent object will be stored.
For more information on persistent object files, see "Chapter 66—ZIL_STORAGE"
of Programmer's Reference Volume 1.

Chapter 11 - UIW_MAXIMIZE_BUTTON 263

• objectin is a pointer to the ZIL_STORAGE_OBJECT where the persistent object
information will be stored. This must be allocated by the programmer. For more
information on loading persistent objects, see "Chapter 68—ZIL_STORAGE_-
OBJECT" of Programmer's Reference Volume 1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT::objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions, and compare functions. For more details about userTable see the
description of U1JVINDOW_OBJECT::userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

264 OpenZinc Application Framework—Programmer's Reference Volume 2

CHAPTER 12 - UIW_MINIMIZE_BUTTON

The UIW_MINIMIZE_BUTTON class is used to minimize a window. If an icon with
the ICF_MINIMIZE_OBJECT flag set has been added to the window, the window is
reduced to that icon when the minimize button is selected. The figure below shows a
graphical implementation of a window with a UIW_MINIMIZE_BUTTON object (the
button with the 'T ' character):

NOTE: The Macintosh does not allow the minimizing of windows. Thus, OpenZinc will
ignore this object and it will have no effect if used in a Macintosh application.

The UIW_MINIMIZE_BUTTON class is declared in UI_WIN.HPP. Its public and
protected members are:

class ZIL_EXPORT_CLASS UIW_MINIMIZE_BUTTON : public UIW_BUTTON {
public:

static ZIL_ICHAR _className[];
static int defaultlnitialized;

UIW_MINIMIZE_BUTTON(void);
virtual ~UIW_MINIMIZE_BUTTON(void);
virtual ZIL_ICHAR *ClassName(void);
virtual EVENT_TYPE Event(const UI_EVENT &event);
virtual void *Information(ZIL_INFO_REQUEST request, void *data,

ZIL_OBJECTID objectID = ID_DEFAULT);

#if defined (ZIL_LOAD)
virtual ZIL_NEW_FUNCTION NewFunction(void);
static UI_WINDOW_OBJECT *New(const ZIL_ICHAR *name,

ZIL_STORAGE_READ_ONLY *file = ZIL_NULLP(ZIL_STORAGE_READ_ONLY),
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY),
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),

Chapter 12 - UIW_MINIMIZE_BUTTON 265

UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));
UIW_MINIMIZE_BUTTON(const ZIL_ICHAR *name, ZIL_S TORAGE_READ_ONLY *file,

ZIL_STORAGE_OBJECT_READ_ONLY *object,
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

virtual void Load(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

#endif
#if defined (ZIL_STORE)

virtual void Store(const ZIL_ICHAR *name, ZIL_STORAGE *file,
ZIL_STORAGE__OBJECT *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

#endif

void SetDecorations(const ZIL_ICHAR *decorationName);

protected:
const ZIL_DECORATION *myDecorations;

} ;

General Members

This section describes those members that are used for general purposes.

• _className contains a string identifying the class. The string is always the same
name as the class, is always in English, and never changes. For example, for the
UIW_MINIMIZE_BUTTON class, _className is "UIW_MINIMIZE_BUTTON."

• defaultlnitialized indicates if the default decorations (i.e., images) for this object have
been set up. The default decorations are located in the file IMG_DEF.CPP. If
defaultlnitialized is TRUE, the decorations have been set up. Otherwise they have
not been.

• myDecorations is the ZIL_DECORATION object that contains the images for this
object.

UIW_MINIMIZE_BUTTON::UIW_MINIMIZE_BUTTON

Syntax

#include <ui_win.hpp>

UIW_MINIMIZE_BUTTON(void);

266 OpenZinc Application Framework—Programmer's Reference Volume 2

Portability
This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics • Windows
• OSF/Motif • Curses

• OS/2
• NEXTSTEP

Remarks
This constructor creates a new UIW_MINIMIZE_BUTTON class object. The minimize
button object is always positioned in the upper right corner of the parent window. To
ensure that the minimize button is drawn correctly, it must be added right after the UIW_-
MAXIMIZE_BUTTON class object. The following example shows the correct order of
minimize button addition.

#include <ui_win.hpp>

ExampleFunction(UI_WINDOW_MANAGER *windowManager)
{

// Create a window and attach it to the window manager.
UIW_WINDOW *window = new UIW_WINDOW(0, 0, 40, 10);
*window

+ new UIW_BORDER
+ new UIW_MAX IMIZ E_BUTTON
+ new UIW_MINIMIZEJBUTTON
+ new UIW_SYSTEM_BUTTON
+ new UIW_TITLE("Window 1");

*windowManager + window;

// The minimize button will automatically be destroyed when the window
//is destroyed.

}

UIW_MINIMIZE_BUTTON::~UIW_MINIMIZE_BUTTON

Example

Syntax
#include <ui_win.hpp>

virtual ~UIW_MINIMIZE_BUTTON(void);

Chapter 12 - UIW_MINIMIZE_BUTTON 267

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows
• Macintosh • OSF/Motif • Curses

• OS/2
• NEXTSTEP

Remarks
This virtual destructor destroys the class information associated with the UIW_MINI-
MIZE_BUTTON object.

UIW_MINIMIZE_BUTTON::ClassName

Syntax
#include <ui_win.hpp>

virtual ZIL_ICHAR *ClassName(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks

This virtual function returns the object's class name.

• returnValueout is a pointer to _className.

268 OpenZinc Application Framework—Programmer's Reference Volume 2

UIW_MINIMIZE_BUTTON::Event

Syntax
#include <ui_win.hpp>

virtual EVENT_TYPE Event(const UI_EVENT &event);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function processes run-time messages sent to the minimize button object. It is
declared virtual so that any derived minimize button class can override its default
operation.

• returnValuein indicates how event was processed. If the event is processed
successfully, the function returns the logical type of event that was interpreted from
event. If the event could not be processed, S_UNKNOWN is returned.

• eventin contains a run-time message for the minimize button object. The type of
operation performed depends on the interpretation of the event. The following logical
events are processed by Event():

L_BEGIN_SELECT—Indicates that the end-user pressed the mouse button
down. This begins the selection process of an object. This event is interpreted
from an event generated by the mouse device.

L_CONTINUE_SELECT—Indicates that the end-user previously clicked down
on the object with the mouse and is now continuing to hold the mouse button
down while on the object.

S_CHANGED—Causes the object to recalculate its position and size. When a
window is moved or sized, the objects on the window will need to recalculate
their positions. This message informs an object that it has changed and that it
should update itself.

Chapter 12 - UIW_MINIMIZE_BUTTON 269

S_CREATE—Causes the object to create itself. The object will calculate its
position and size and, if necessary, will register itself with the operating system.
This message is sent by the Window Manager when a window is attached to it
to cause the window and all the objects attached to the window to determine
their positions.

S_INITIALIZE—Causes the object to initialize any necessary information that
may require a knowledge of its parent or siblings. When a window is added to
the Window Manager, the Window Manager sends this message to cause the
window and all the objects attached to the window to initialize themselves.

All other events are passed by Event() to UIWJBUTTON::Event() for processing.

NOTE: Because most graphical operating systems already process their own events
related to this object, the messages listed above may not be handled in every
environment. Wherever possible, OpenZinc allows the operating system to process its own
messages so that memory use and speed will be as efficient as possible. In these
situations, the system event can be trapped in a derived Event() function.

UIW_MINIMIZE_BUTTON::lnformation

Syntax
#include <ui_win.hpp>

virtual void *Information(ZIL_INFO_REQUEST request, void *data,
ZIL_OBJECTID objectID = ID_DEFAULT);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function allows OpenZinc Application Framework objects and programmer functions to
get or modify specified information about an object.

270 OpenZinc Application Framework—Programmer's Reference Volume 2

• returnValueout is a pointer to the return data that was requested. The type of the
return data depends on the request. If the request did not require the return of
information, this value is NULL.

• requestin is a request to get or set information associated with the object. The
following requests (defined in UI_WIN.HPP) are recognized by the minimize button:

I_CHANGED_FLAGS—Informs the object that the programmer has changed
some flags associated with the object and that the object should update itself
accordingly. This request should be sent after changing an object's flags,
particularly if the new flag settings will change the visual appearance of the
object.

I_INITIALIZE_CLASS—Causes the object to initialize any basic information
that does not require a knowledge of its parent or sibling objects. This request
is sent from the constructor of the object.

All other requests are passed by Information() to UIW_BUTTON::Information()
for processing.

• datain/out is used to provide information to the function or to receive the information
requested, depending on the type of request. In general, this must be space allocated
by the programmer.

• objectIDin is a ZIL_OBJECTID that specifies which type of object the request is
intended for. Because the Information() function is virtual, it is possible for an
object to be able to handle a request at more than one level of its inheritance
hierarchy. objectID removes the ambiguity by specifying which level of an object's
hierarchy should process the request. If no value is provided for objectID, the object
will attempt to interpret the request with the objectID of the actual object type.

UIW_MINIMIZE_BUTTON::SetDecorations

Syntax
#include <ui_win.hpp>

void SetDecorations(const ZIL_ICHAR *decorationName);

Chapter 12 - UIW_MINIMIZE_BUTTON 271

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function sets the decorations (i.e., images) to be used by the object. The images for
the object will be loaded and the object's myDecorations member will be updated to point
to the new ZIL_DECORATION object. By default, the object uses the images identified
in the IMG_DEF.CPP file, which compiles into the library. (If different default images
are desired, simply copy a IMG_<ISO>.CPP file from the OpenZinc\SOURCE\INTL
directory to the \OpenZinc\SOURCE directory, and rename it to IMG_DEF.CPP before
compiling the library.) The images are loaded from the I18N.DAT file, so it must be
shipped with your application.

• decorationNamein is the two-letter ISO country code identifying which images the
object should use.

Storage Members

This section describes those class members that are used for storage purposes.

UIW_MINIMIZE_BUTTON::UIW_MINIMIZE_BUTTON

Syntax
#include <ui_win.hpp>

UIW_MINIMIZE_BUTTON(const ZIL_ICHAR *name,
ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object,
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

272 OpenZinc Application Framework—Programmer's Reference Volume 2

Portability
This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics • Windows
• OSF/Motif • Curses

• OS/2
• NEXTSTEP

Remarks
This advanced constructor creates a new UIW_MINIMIZE_BUTTON by loading the
object from a data file. Typically, the programmer does not need to use this constructor.
If a minimize button is stored in a data file it is usually stored as part of a UIW_-
WINDOW and will be loaded when the window is loaded.

• namein is the name of the object to be loaded.

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT::objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions, and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT::userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

Chapter 12 - UIW_MINIMIZE_BUTTON 273

UIW MINIMIZE_BUTTON::Load

Syntax
#include <ui_win.hpp>

virtual void Load(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced function is used to load a UIW_MINIMIZE_BUTTON from a persistent
object data file. It is called by the persistent constructor and is typically not used by the
programmer.

• namein is the name of the object to be loaded.

• filein
 is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the

persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT::objectTable in "Chapter 43—UIJWIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

274 OpenZinc Application Framework—Programmer's Reference Volume 2

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions, and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT:. userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

UIW_MINIMIZE_BUTTON::New

Syntax
#include <ui_win.hpp>

static UI_WINDOW_OBJECT *New(const ZIL_ICHAR *name,
ZIL_STORAGE_READ_ONLY *file =

ZIL_NULLP(ZIL_STORAGE_READ_ONLY),
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY),
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced function is used to load a persistent object from a data file. This function
is a static class member so that its address can be placed in a table used by the library to
load persistent objects from a data file.

NOTE: The application must first create a display if objects are to be loaded from a data
file.

• namein is the name of the object to be loaded.

Chapter 12 - UIW_MINIMIZE_BUTTON 275

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT:.objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions, and compare functions. For more details about userTable see the
description of UI_WINDOWJDBJECT::userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

UIW_MINIMIZE_BUTTON::NewFunction

Syntax
#include <ui_win.hpp>

virtual ZIL_NEW_FUNCTION NewFunction(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

276 OpenZinc Application Framework—Programmer's Reference Volume 2

Remarks
This virtual function returns a pointer to the object's New() function.

• returnValueout is a pointer to the object's New() function.

UIW_MINIMIZE_BUTTON::Store

Syntax
#include <ui_win.hpp>

virtual void Store(const ZIL_ICHAR *name, ZIL_STORAGE *file,
ZIL_STORAGE_OBJECT *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced function is used to write an object to a data file.

• namein is the name of the object to be stored.

• filein is a pointer to the ZIL_STORAGE where the persistent object will be stored.
For more information on persistent object files, see "Chapter 66—ZIL_STORAGE"
of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT where the persistent object
information will be stored. This must be allocated by the programmer. For more
information on loading persistent objects, see "Chapter 68—ZIL_STORAGE_-
OBJECT" of Programmer's Reference Volume 1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see

Chapter 12 - UIW_MINIMIZE_BUTTON 277

the description of UI_WINDOW_OBJECT::objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions, and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT:. userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

278 OpenZinc Application Framework—Programmer's Reference Volume 2

CHAPTER 13 - UIW_NOTEBOOK

The UIW_NOTEBOOK class is used to display multiple pages of related objects. The
class is so named because it's appearance resembles a notebook with tabs on the pages.
Each tab, when selected with the mouse, will "turn" to that page. The tabs contain text
identifying the page's contents. The figure below shows a graphical implementation of
a window with a UIW_NOTEBOOK object:

The UIW_NOTEBOOK class is declared in UI_WIN.HPP. Its public and protected
members are:

class ZIL_EXPORT_CLASS UIW_NOTEBOOK : public UIW_WINDOW {
public:

static int borderWidth;
static int shadowWidth;
static ZIL_ICHAR _className[];

UIW_NOTEBOOK(void);
~UIW_NOTEBOOK(void);
virtual ZIL_ICHAR *ClassName(void);
virtual EVENT_TYPE Drawltem(const UI_EVENT &event, EVENT_TYPE ccode);
virtual EVENT_TYPE Event(const UI_EVENT &event);
virtual void * Information(INFO_REQUEST request, void *data,

OBJECTID objectID = ID_DEFAULT);

#if defined(ZIL_LOAD)
virtual ZIL_NEW_FUNCTION NewFunction(void);
static UI_WINDOW_OBJECT *New(const ZIL_ICHAR *name,

ZIL_STORAGE_READ_ONLY *file = ZIL_NULLP(ZIL_STORAGE_READ_ONLY),
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY),
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

UIW_NOTEBOOK(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object,

Chapter 13 - UIW_NOTEBOOK 279

UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

virtual void Load(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

#endif
#if defined(ZIL_STORE)

virtual void Store(const ZIL_ICHAR *name, ZIL_STORAGE *file,
ZIL_STORAGE_OBJECT *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

#endif

// List members.
UIW_WINDOW *Add(UIW_WINDOW *object);
UIW_NOTEBOOK &operator+(UIW_WINDOW *object);
}

General Members

This section describes those members that are used for general purposes.

• borderWidth is the width of the border that appears around the notebook edges.

• shadowWidth is the width of the shadow that appears around the notebook edges.

• _className contains a string identifying the class. The string is always the same
name as the class, is always in English, and never changes. For example, for the
UIW_NOTEBOOK class, _className is "UIW_NOTEBOOK."

UIW_NOTEBOOK::UIW_NOTEBOOK

Syntax

#include <ui_win.hpp>

UIW_NOTEBOOK(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

280 OpenZinc Application Framework—Programmer's Reference Volume 2

Remarks
This constructor creates a new UIW_NOTEBOOK class object.

UIW_NOTEBOOK::~UIW_NOTEBOOK

Syntax

#include <ui_win.hpp>

virtual ~UIW_NOTEBOOK(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This virtual destructor destroys the class information associated with the UIW_NOTE-
BOOK object. All objects attached to the notebook will also be destroyed.

UIW_NOTEBOOK::Add
UIW_NOTEBOOK::operator +

Syntax
#include <ui_win.hpp>

UIW_WINDOW *Add(UIW_WINDOW *object);
or

UIW_NOTEBOOK &operator + (UIW_WINDOW *object);

Chapter 13 - UIW_NOTEBOOK 281

Portability
This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics • Windows
• OSF/Motif • Curses

• OS/2
• NEXTSTEP

Remarks
These overloaded functions are used to add a page of objects to the notebook. Each page
of objects on the notebook is created by adding a UIW_WINDOW, with sub-objects
attached to it. The order in which the windows are added determines the order in which
the pages will appear. The first window added will be the first, or front, page. The title
bar text is used to identify the page on the tab.

The first function adds a page to the UIW_NOTEBOOK.

• returnValueout is a pointer to object if the addition was successful. Otherwise,
returnValue is NULL.

• objectin is a pointer to the window to be added to the notebook.

The second overloaded operator adds a page to the UIW_NOTEBOOK. This operator
overload is equivalent to calling the UIW_NOTEBOOK::Add() function except that it
allows the chaining of object additions to the UIW_NOTEBOOK.

• returnValueout is a pointer to the UIW_NOTEBOOK. This pointer is returned so that
the operator may be used in a statement containing other operations.

• objectin is a pointer to the window that is to be added to the notebook.

UIW NOTEBOOK::ClassName

Syntax
#include <ui_win.hpp>

virtual ZIL_ICHAR *ClassName(void);

282 OpenZinc Application Framework—Programmer's Reference Volume 2

Portability
This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics • Windows
• OSF/Motif • Curses

• OS/2
• NEXTSTEP

Remarks

This virtual function returns the object's class name.

• returnValueout is a pointer to _className.

UIW_NOTEBOOK::Drawltem

Syntax
#include <ui_win.hpp>

virtual EVENT_TYPE DrawItem(const UI_EVENT &event, EVENT_TYPE ccode);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

This virtual advanced function is used to draw the- object. If the WOS_OWNERDRAW
status is set for the object, this function will be called when drawing the notebook. This
allows the programmer to derive a new class from UIW_NOTEBOOK and handle the
drawing of the notebook, if desired.

• returnValueout is a response based on the success of the function call. If the object
is drawn the function returns a non-zero value. If the object is not drawn, 0 is

Remarks

returned.

Chapter 13 - UIW_NOTEBOOK 283

• eventin contains the run-time message that caused the object to be redrawn.
event.region contains the region in need of updating. The following logical events
may be sent to the Drawltem() function:

S_CURRENT, S_NON_CURRENT, S_DISPLAY_ACTIVE and S_DIS-
PLAY_INACTIVE—Messages that cause the object to be redrawn.

WM_DRAWITEM—A message that causes the object to be redrawn. This
message is specific to Windows and OS/2.

Expose—A message that causes the object to be redrawn. This message is
specific to Motif.

• ccodein contains the logical interpretation of event.

UIW_NOTEBOOK::Event

Syntax
#include <ui_win.hpp>

virtual EVENT_TYPE Event(const UI_EVENT &event);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function processes run-time messages sent to the notebook object. It is declared
virtual so that any derived notebook class can override its default operation.

• returnValueout indicates how event was processed. If the event is processed
successfully, the function returns the logical type of event that was interpreted from
event. If the event could not be processed, S_UNKNOWN is returned.

284 OpenZinc Application Framework—Programmer's Reference Volume 2

• eventin contains a run-time message for the notebook object. The type of operation
performed depends on the interpretation of the event. The following logical events
are processed by Event():

S_CHANGED—Causes the object to recalculate its position and size. When a
notebook is moved or sized, the objects on the notebook will need to recalculate
their positions. This message informs an object that it has changed and that it
should update itself.

S_CREATE—Causes the object to create itself. The object will calculate its
position and size and, if necessary, will register itself with the operating system.
This message is sent by the Window Manager when a notebook is attached to
it to cause the notebook and all the objects attached to the notebook to determine
their positions.

S_SIZE—Causes the object to recalculate its position and size. When a
notebook is sized, the objects on the notebook will need to recalculate their
positions. This message informs an object that it has changed and that it should
update itself.

S_CHANGE_PAGE—Causes the notebook to "turn" to a new page. The page
number that should be turned to is subtracted from S_CHANGE_PAGE and
passed as the event type. The first page that was added is page zero. For
example, if ten pages were added, and the application needs to turn to page
seven, an event with a type of S_CHANGE_PAGE - 6 should be sent to the
notebook. Thus, an S_CHANGE_PAGE event by itself will turn to the first page
in the notebook.

All other events are passed by Event() to UIW_WINDOW::Event() for processing.

NOTE: Because some graphical operating systems already process their own events
related to this object, the messages listed above may not be handled in every
environment. Wherever possible, OpenZinc allows the operating system to process its own
messages so that memory use and speed will be as efficient as possible. In these
situations, the system event can be trapped in a derived Event() function.

Chapter 13 - UIW_NOTEBOOK 285

UIW_NOTEBOOK::Information

Syntax
#include <ui_win.hpp>

virtual void *Information(ZIL_INFO_REQUEST request, void *data,
ZIL_OBJECTID objectID = ID_DEFAULT);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function allows OpenZinc Application Framework objects and programmer functions to
get or modify specified information about an object.

• returnValueout is a pointer to the return data that was requested. The type of the
return data depends on the request. If the request did not require the return of
information, this value is NULL.

• requestin is a request to get or set information associated with the object. The
following requests (defined in UI_WIN.HPP) are recognized by the notebook:

I_GET_NUMBERID_OBJECT—Returns a pointer to an object whose
numberlD matches the value in data, if one exists. This object does a depth-first
search of the objects attached to it, looking for a match of the numberlD. If no
object has a numberlD that matches data, NULL is returned. If this message is
sent, data must be a pointer to a NUMBERID. Programmers should use a
window's numberlD with caution as it may change at run-time. For more
details, see the note accompanying the description of UI_WINDOW_-
OBJECT::NumberID() in "Chapter 43—UI_WINDOW_OBJECT" of
Programmer's Reference Volume 1.

I_GET_STRINGID_OBJECT—Returns a pointer to an object whose stringlD
matches the character string in data, if one exists. This object does a depth-first
search of the objects attached to it looking for a match of the stringlD. If no

286 OpenZinc Application Framework—Programmer's Reference Volume 2

object has a stringlD that matches data, NULL is returned. If this message is
sent, data must be a pointer to a string.

I_INITIALIZE_CLASS—Causes the object to initialize any basic information
that does not require a knowledge of its parent or sibling objects. This request
is sent from the constructor of the object.

I_SET_SEARCH_PAGE—Sets the page to be searched on a subsequent
I_GET_NUMBERID_OBJECT or I_GET_STRINGID_OBJECT request. If the
notebook has many pages and the number of the page containing the desired
object is known, sending the I_SET_SEARCH_PAGE request will speed up the
subsequent object request. If the I_SET_SEARCH_PAGE request is sent, data
must be a pointer to an int that contains the page number to be searched. If data
is -1, then subsequent I_GET_NUMBERID_OBJECT and I_GET_STRINGID_-
OBJECT requests will start with the first page and continue through each page
until the object is found.

All other requests are passed by Information() to UIW_WINDOW::Information()
for processing.

• datain/out is used to provide information to the function or to receive the information
requested, depending on the type of request. In general, this must be space allocated
by the programmer.

• objectIDin is a ZIL_OBJECTID that specifies which type of object the request is
intended for. Because the Information() function is virtual, it is possible for an
object to be able to handle a request at more than one level of its inheritance
hierarchy. objectID removes the ambiguity by specifying which level of an object's
hierarchy should process the request. If no value is provided for objectID, the object
will attempt to interpret the request with the objectID of the actual object type.

Storage Members

This section describes those class members that are used for storage purposes.

Chapter 13 - UIW_NOTEBOOK 287

UIW_NOTEBOOK::UIW_NOTEBOOK

Syntax
#include <ui_win.hpp>

UIW_NOTEBOOK(const ZIL_ICHAR *name,
ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object,
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced constructor creates a new UIW_NOTEBOOK by loading the object from
a data file. Typically, the programmer does not need to use this constructor. If a
maximize button is stored in a data file it is usually stored as part of a UIW_WINDOW
and will be loaded when the window is loaded.

• namein is the name of the object to be loaded.

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY'' of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT:.objectTable in "Chapter 43—UI_WIN-

288 OpenZinc Application Framework—Programmer's Reference Volume 2

DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions, and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT::userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

UIW_NOTEBOOK::Load

Syntax
#include <ui_win.hpp>

virtual void Load(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced function is used to load a UIW_NOTEBOOK from a persistent object data
file. It is called by the persistent constructor and is typically not used by the programmer.

• namein is the name of the object to be loaded.

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY'' of Programmer's Reference Volume 1.

Chapter 13 - UIW_NOTEBOOK 289

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT::objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions, and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT: .userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

UIW_NOTEBOOK::New

Syntax
#include <ui_win.hpp>

static UI_WINDOW_OBJECT *New(const ZIL_ICHAR *name,
ZIL_STORAGE_READ_ONLY *file =

ZIL_NULLP(ZIL_STORAGE_READ_ONLY),
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY),
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

290 OpenZinc Application Framework—Programmer's Reference Volume 2

Remarks
This advanced function is used to load a persistent object from a data file. This function
is a static class member so that its address can be placed in a table used by the library to
load persistent objects from a data file.

NOTE: The application must first create a display if objects are to be loaded from a data
file.

• namein is the name of the object to be loaded.

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT::objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions, and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT:. userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

UIW_NOTEBOOK::NewFunction

Syntax
#include <ui_win.hpp>

virtual ZIL_NEW_FUNCTION NewFunction(void);

Chapter 13 - UIW_NOTEBOOK 291

Portability
This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics • Windows
• OSF/Motif • Curses

• OS/2
• NEXTSTEP

Remarks
This virtual function returns a pointer to the object's New() function.

UIW NOTEBOOK::Store

Syntax
#include <ui_win.hpp>

virtual void Store(const ZIL_ICHAR *name, ZIL_STORAGE *file,
ZIL_STORAGE_OBJECT *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced function is used to write an object to a data file.

• namein is the name of the object to be stored.

• filein is a pointer to the ZIL_STORAGE where the persistent object will be stored.
For more information on persistent object files, see "Chapter 66—ZIL_STORAGE"
of Programmer's Reference Volume 1.

292 OpenZinc Application Framework—Programmer's Reference Volume 2

• returnValueout is a pointer to the object's New() function.

• objectin is a pointer to the ZIL_STORAGE_OBJECT where the persistent object
information will be stored. This must be allocated by the programmer. For more
information on loading persistent objects, see "Chapter 68—ZIL_STORAGE_-
OBJECT" of Programmer's Reference Volume 1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT:.objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions, and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT::userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

Chapter 13 - UIW_NOTEBOOK 293

OpenZinc Application Framework—Programmer's Reference Volume 2 294

CHAPTER 14 - UIW_POP_UP_ITEM

The UIW_POP_UP_ITEM class is used to display menu options in a pop-up menu. A
pop-up item can have a sub-menu associated with it. The figure below shows a graphical
implementation of the UIW_POP_UP_ITEM objects (shown as "Refresh" and "Exit"
on the pop-up menu):

The UIW_POP_UP_ITEM class is declared in UI_WIN.HPP. Its public and protected
members are:

class ZIL_EXPORT_CLASS UIW_POP_UP_ITEM : public UIW_BUTTON
{
public:

static ZIL_ICHAR _className[];
static int defaultlnitialized;
MNIF_FLAGS mniFlags;
UIW_POP_UP_MENU menu;
UIW_POP_UP_ITEM(void);
UIW_POP_UP_ITEM(ZIL_ICHAR *text, MNIF_FLAGS mniFlags = MNIF_NO_FLAGS,

BTF_FLAGS btFlags = BTF_N0_3D, WOF_FLAGS woFlags = WOF_NO_FLAGS,
ZIL_USER_FUNCTION userFunction = ZIL_NULLF(ZIL_USER_FUNCTION),
EVENT_TYPE value = 0);

UIW_POP_UP_ITEM(int left, int top, int width, ZIL_ICHAR *text,
MNIF_FLAGS mniFlags = MNIF_NO_FLAGS,
BTF_FLAGS btFlags = BTF_NO_FLAGS,
WOF_FLAGS woFlags = WOF_NO_FLAGS,
ZIL_USER_FUNCTION userFunction = ZIL_NULLF(ZIL_USER_FUNCTION),
EVENT_TYPE value = 0);

virtual ~UIW_POP_UP_ITEM(void);
virtual ZIL_ICHAR *ClassName(void);
virtual EVENT_TYPE Event(const UI_EVENT &event);
virtual void *Information(ZIL_INFO_REQUEST request, void *data,

ZIL_OBJECTID objectID = ID_DEFAULT);

#if defined(ZIL_LOAD)
virtual ZIL_NEW_FUNCTION NewFunction(void);
static UI_WINDOW_OBJECT *New(const ZIL_ICHAR *name,

ZIL_STORAGE_READ_ONLY *file = ZIL_NULLP(ZIL_STORAGE_READ_ONLY),
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY),
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

UIW_POP_UP_ITEM(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object,
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),

Chapter 17 - UIW_PULL_DOWN_ITEM 295

UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));
virtual void Load(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,

ZIL_STORAGE_OBJECT_READ_ONLY *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

#endif
#if defined (ZIL_STORE)

virtual void Store(const ZIL_ICHAR *name, ZIL_STORAGE *file,
ZIL_STORAGE_OBJECT *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

#endif

// List members.
UI_WINDOW_OBJECT *Add(UI_WINDOW_OBJECT *object);
UI_WINDOW_OBJECT *Subtract(UI_WINDOW_OBJECT *object);
UIW_POP_UP_ITEM &operator+(UI_WINDOW_OBJECT *object);
UIW_POP_UP_ITEM &operator-(CJI_WINDOW_OBJECT *object);

void SetDecorations(const ZIL_ICHAR *decorationName);

protected:
virtual EVENT_TYPE DrawItem(const UI_EVENT &event, EVENT_TYPE ccode);
const ZIL_DECORATION *rnyDecorations;

} ;

General Members

This section describes those members that are used for general purposes.

• _className contains a string identifying the class. The string is always the same
name as the class, is always in English, and never changes. For example, for the
UIW_POP_UP_ITEM class, _className is "UIW_POP_UP_ITEM."

• defaultlnitialized indicates if the default decorations (i.e., images) for this object have
been set up. The default decorations are located in the file IMG_DEF.CPP. If
defaultlnitialized is TRUE, the decorations have been set up. Otherwise they have
not been.

• mniFlags are flags that define the operation of the UIW_POP_UP_ITEM class. A
full description of the pop-up item flags is given in the UIW_POP_UP_ITEM
constructor.

• menu is the UIW_POP_UP_MENU that maintains the pop-up menu options that are
displayed when the pop-up item is selected if it has a sub-menu.

• myDecorations is the ZIL_DECORATIONS object that contains the images for this
object.

296 OpenZinc Application Framework—Programmer's Reference Volume 2

UIW_POP_UP_ITEM::UIW_POP_UP_ITEM

Syntax
#include <ui_win.hpp>

UIW_POP_UP_ITEM(void);
or

UIW_POP_UP_ITEM(ZIL_ICHAR *text, MNIF_FLAGS mniFlags = MNIF_NO_FLAGS,
BTF_FLAGS btFlags = BTF_N0_3D,W0F_FLAGS woFlags = WOF_NO_FLAGS,
ZIL_USER_FUNCTION userFunction = ZIL_NULLF(ZIL_USER_FUNCTION),
EVENT_TYPE value = 0);
or

UIW_POP_UP_ITEM(int left, int top, int width, ZIL_ICHAR *text,
MNIF_FLAGS mniFlags = MNIF_NO_FLAGS,
BTF_FLAGS btFlags = BTF_NO_FLAGS,
WOF_FLAGS woFlags = WOF_NO_FLAGS,
ZIL_USER_FUNCTION userFunction = ZIL_NULLF(ZIL_USER_FUNCTION),
EVENT_TYPE value = 0);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
These overloaded constructors create a new UIW_POP_UP_ITEM class object.

The first constructor takes no arguments. It creates a menu separator that appears as a
horizontal line when placed in a pop-up menu.

The second constructor creates a pop-up item. It takes the following arguments:

• textin is the text that is shown in the pop-up item. A hotkey for the pop-up item may
be specified by inserting the '&' character into the string before the desired hotkey
character. For example, if the string "Exit" is to be displayed and 'x' is to be the
hotkey, the string should be entered as "E&xit." The '&' will not be displayed, but
will cause the hotkey character to be drawn appropriately. If an '&' is required in

Chapter 14 - UIW_POP_UP_ITEM 297

the text that is displayed, place two '&' characters in the string (e.g., "A && B"
will display as "A & B" and the pop-up item will not have a hotkey). This string
is copied by the UIW_POP_UP_ITEM class unless the WOF_NO_ALLOCATE_-
DATA flag is set. If this flag is set, text must be space, allocated by the
programmer, that is not deleted until the UIW_POP_UP_ITEM object has been
deleted.

• mniFlagsin are flags that define the operation of the UIW_POP_UP_ITEM class. The
following flags (declared in UI_WIN.HPP) control the general presentation of a
UIW_POP_UP_ITEM class object:

MNIF_CHECK_MARK—Causes the pop-up item to display a check mark at
the front of the text when the pop-up item is selected.

MNIF_NO_FLAGS—Does not associate any special flags with the pop-up item.
This flag should not be used in conjunction with any other MNIF flags. This
flag is set by default in the constructor.

MNIF_SEPARATOR—Causes the pop-up item to be a separator that will
appear as a horizontal line when placed in a pop-up menu.

MNIF_SEND_MESSAGE—Causes an event to be created and put on the event
queue when the menu item is selected. The pop-up item's value is used as the
EVENT_TYPE of the event placed on the queue. If this flag is set, the pop-up item
should not have a user function. This flag is equivalent to the BTF_SEND_-
MESSAGE flag.

• btFlagsin are flags that define the operation of the UIW_POP_UP_ITEM class. The
following flags (declared in UI_WIN.HPP) control the general presentation of a
UIW_POP_UP_ITEM class object:

BTF_DOWN_CLICK—Completes the item's action on a mouse down-click,
rather than on a down-click and release action.

BTF_NO_FLAGS—Does not associate any special flags with the UIW_-
POP_UP_ITEM class object. In this case the item requires a down and up click
from the mouse to complete an action. This flag should not be used in
conjunction with any other BTF flags.

BTF_NO_TOGGLE—Causes the pop-up item to not toggle between selected
and non-selected states. This flag should not be set if the MNIF_CHECK_-
MARK flag is set.

298 OpenZinc Application Framework—Programmer's Reference Volume 2

BTF_SEND_MESSAGE—Causes an event to be created and put on the event
queue when the menu item is selected. The pop-up item's value is used as the
EVENT_TYPE of the event placed on the queue. If this flag is set, the pop-up item
should not have a user function. This flag is equivalent to the MNIF_SEND_-
MESSAGE flag.

• woFlagsin are flags (common to all window objects) that determine the general
operation of the window object. The following flags (declared in UI_WIN.HPP)
control the general presentation of, and interaction with, a pop-up item:

WOF_BORDER—Draws a border around the object. The graphical border's
appearance will depend on the operating system used, and, if in DOS, on the
graphics style being used. In text mode, a border may or may not be drawn,
depending on the text style being used. See "Appendix A—Support
Definitions" in this manual for information on changing DOS graphics mode
styles and text mode styles. This flag is set by default in the constructor.

WOF_JUSTIFY_CENTER—Center-justifies the text within the displayed
button.

WOF_JUSTIFY_RIGHT—Right-justifies the text within the displayed button.

WOF_NO_ALLOCATE_DATA—Prevents the object from allocating a buffer
to store the data. If this flag is set, the programmer is responsible for allocating
the memory for the data. The programmer is also responsible for deallocating
that memory when it is no longer needed.

WOF_NO_FLAGS—Does not associate any special window flags with the
object. Setting this flag left-justifies the data. This flag should not be used in
conjunction with any other WOF flags.

WOF_NON_SELECTABLE—Prevents the object from being selected. If this
flag is set, the user will not be able to position on nor select the pop-up item.
Typically, the object will be drawn in such a manner as to appear non-selectable
(e.g., it may appear lighter than a selectable field).

• userFunctionin is a programmer defined function that will be called by the library at
certain points in the user's interaction with an object. The user function will be
called by the library when:

1—the user moves onto the field,

Chapter 14 - UIW_POP_UP_ITEM 299

2—the <ENTER> key is pressed while the pop-up item is current or the mouse
is clicked on the object, or

3—the user moves to a different field in the window or to a different window.

Because the user function is called at these times, the programmer can do data
validation or any other type of necessary operation. The definition of the
userFunction is as follows:

EVENT_TYPE FunctionName(UI_WINDOW_OBJECT *object,
UI_EVENT &event, EVENT_TYPE ccode);

returnValueout indicates if an error has occurred. returnValue should be 0 if the
no error occurred. Otherwise, the programmer should call the error system with
an appropriate error message and return -1.

objectin is a pointer to the object for which the user function is being called.
This argument must be typecast by the programmer if class-specific members
need to be accessed.

eventin is the run-time message passed to the object.

ccodein is the logical or system code that caused the user function to be called.
This code (declared in UI_EVT.HPP) will be one of the following constant
values:

L_SELECT—The <ENTER> key was pressed while the field was current,
or the pop-up item was clicked on with the mouse.

S_CURRENT—The object just received focus because the user moved to
it from another field or window.

S_NON_CURRENT—The object just lost focus because the user moved to
another field or window.

• valuein is an event that will be placed on the event queue if the pop-up item has the
MNIF_SEND_MESSAGE flag set and the end-user selects the pop-up item, value
can also be used as an identifier to distinguish between several pop-up items in a
common user function. For example, the programmer could associate the value 0
with a "Save" menu item and a value of 1 with a "Save As" menu item. This
allows the programmer to define one user function that can determine the action to
take based on the pop-up item's value.

300 OpenZinc Application Framework—Programmer's Reference Volume 2

The third constructor creates a pop-up item. It takes the following arguments:

• left i n and topin is the starting position of the pop-up item within its parent window.
Typically, these values are in cell coordinates. If the WOF_MINICELL flag is set,
however, these values will be interpreted as minicell values.

• widthin is the width of the pop-up item. Typically, this value is in cell coordinates.
If the WOF_MINICELL flag is set, however, this value will be interpreted as a
minicell value. The height of the button is determined automatically by the UIW_-
POP_UP_ITEM object.

• textin is the text that is shown in the pop-up item. A hotkey for the pop-up item may
be specified by inserting the '&' character into the string before the desired hotkey
character. For example, if the string "Exit" is to be displayed and 'x' is to be the
hotkey, the string should be entered as "E&xit." The '&' will not be displayed, but
will cause the hotkey character to be drawn appropriately. If an '&' is required in
the text that is displayed, place two '&' characters in the string (e.g., "A && B"
will display as "A & B" and the pop-up item will not have a hotkey). This string
is copied by the UIW_POP_UP_ITEM class unless the WOF_NO_ALLOCATE_-
DATA flag is set. If this flag is set, text must be space, allocated by the
programmer, that is not deleted until the UIW_POP_UP_ITEM object has been
deleted.

• mniFlagsin are flags that define the operation of the UIW_POP_UP_ITEM class. For
a description of valid MNIF_FLAGS, see the description of the second constructor,
above.

• btFlagsin are flags that define the operation of the UIW_POP_UP_ITEM class. For
a description of valid BTF_FLAGS, see the description of the second constructor,
above.

• woFlagsin are flags (common to all window objects) that determine the general
operation of the window object. For a description of valid WOF_FLAGS, see the
description of the second constructor, above.

• userFunctionin is a programmer defined function that will be called by the library at
certain points in the user's interaction with an object. For a description of how the
user function is used, see the description of the second constructor, above.

• valuein is an event that will be placed on the event queue if the pop-up item has the
MNIF_SEND_MESSAGE flag set and the end-user selects the pop-up item, value
can also be used as an identifier to distinguish between several pop-up items in a

Chapter 14 - UIW_POP_UP_ITEM 301

common user function. For example, the programmer could associate the value 0
with a "Save" menu item and a value of 1 with a "Save As" menu item. This
allows the programmer to define one user function that can determine the action to
take based on the pop-up item's value.

Example
#include <ui_win.hpp>

ExampleFunction(UI_WINDOW_MANAGER *windowManager) {
// Create a window with basic window objects.
UIW_WINDOW *window = new UIW_WINDOW(0, 0, 40, 10);
*window

+ new UIW_BORDER
+ new UIW_MAXIMIZE_BUTTON
+ new UIW_MINIMIZE_BUTTON
+ &(*new UIW_SYSTEM_BUTTON

+ new UIW_POP_UP_ITEM(""Restore", MNIF_RESTORE)
+ new UIW_POP_UP_ITEM(""Move", MNIF_MOVE)
+ new UIW_POP_UP_ITEM("~Size", MNIF_SIZE))

+ new UIW_TITLE("Window 1");

*windowManager + window;

// The pop-up items are automatically destroyed when the window
// is destroyed.

}

UIW_PO P_UP_ITE M::~UIW_POP_UP_ITEM

Syntax
#include <ui_win.hpp>

virtual ~UIW_POP_UP_ITEM(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

302 OpenZinc Application Framework—Programmer's Reference Volume 2

Remarks
This virtual destructor destroys the class information associated with the UIW_POP_UP_-
ITEM object.

UIW_POP_UP_ITEM::Add
UIW_POP_UP_ITEM::operator +

Syntax
#include <ui_win.hpp>

UI_WINDOW_OBJECT *Add(UI_WINDOW_OBJECT * object);
or

UIW_POP_UP_ITEM &operator + (UI_WINDOW_OBJECT *object);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
These overloaded functions are used to add a new pop-up item to the UIW_POP_UP_-
ITEM object's sub-menu.

The first overloaded function adds a new pop-up item to the UIW_POP_UP_ITEM object.

• returnValueout is a pointer to object if the addition was successful. Otherwise,
returnValue is NULL.

• objectin is a pointer to the new pop-up item to be added to the sub-menu.

The second overloaded operator adds a new pop-up item to the UIW_POP_UP_ITEM
object's sub-menu. This operator overload is equivalent to calling the Add() function
except that it allows the chaining of list element additions to the UIW_POP_UP_ITEM
object.

Chapter 15 - UIW_POP_UP_MENU 303

• returnValueout is a pointer to the UIW_POP_UP_ITEM object. This pointer is
returned so that the operator may be used in a statement containing other operations.

• objectin is a pointer to the new pop-up item that is to be added to the sub-menu.

UIW_POP_UP_ITEM::ClassName

Syntax

#include <ui_win.hpp>

virtual ZIL_ICHAR *ClassName(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows
• Macintosh • OSF/Motif • Curses

Remarks
This virtual function returns the object's class name.

• returnValueout is a pointer to _className.

UIW_POP_UP_ITEM::Drawltem

Syntax
#include <ui_win.hpp>

virtual EVENT_TYPE DrawItem(const UI_EVENT &event, EVENT_TYPE ccode)',

• OS/2
• NEXTSTEP

304 OpenZinc Application Framework—Programmer's Reference Volume 2

Portability
This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics • Windows
• OSF/Motif • Curses

• OS/2
• NEXTSTEP

Remarks
This virtual advanced function is used to draw the object. If the WOS_OWNERDRAW
status is set for the object, this function will be called when drawing the pop-up item.
This allows the programmer to derive a new class from UIW_POP_UP_ITEM and handle
the drawing of the pop-up item, if desired.

• returnValueout is a response based on the success of the function call. If the object
is drawn the function returns a non-zero value. If the object is not drawn, 0 is

• eventin contains the run-time message that caused the object to be redrawn.
event, region contains the region in need of updating. The following logical events
may be sent to the Drawltem() function:

S_CURRENT, S_NON_CURRENT, S_DISPLAY_ACTIVE and S_DIS-
PLAY_INACTIVE—Messages that cause the object to be redrawn.

WM_DRAWITEM—A message that causes the object to be redrawn. This
message is specific to Windows and OS/2.

Expose—A message that causes the object to be redrawn. This message is
specific to Motif.

• ccodejn contains the logical interpretation of event.

returned.

UIW POP_UP ITEM::Event

Syntax
#include <ui_win.hpp>

virtual EVENT_TYPE Event(const UI_EVENT &event);

Chapter 14 - UIW_POP_UP_ITEM 305

Portability
This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics • Windows
• OSF/Motif • Curses

• OS/2
• NEXTSTEP

Remarks
This function processes run-time messages sent to the pop-up item object. It is declared
virtual so that any derived pop-up item class can override its default operation.

• returnValueout indicates how event was processed. If the event is processed
successfully, the function returns the logical type of event that was interpreted from
event. If the event could not be processed, S_UNKNOWN is returned.

• eventin contains a run-time message for the pop-up item object. The type of operation
performed depends on the interpretation of the event. The following logical events
are processed by Event():

L_END_SELECT—Indicates that the selection process, initiated with the L_-
BEGIN_SELECT message, is complete. For example, the end-user has pressed
and released the mouse button. The user function will be called if this event is
received.

L_LEFT—Moves to a new pop-up menu. If the current pop-up menu is a sub-
menu, it is closed and its parent's menu is made current. If the current pop-up
menu is not a sub-menu, the pop-up menu of the pull-down item to the left of
the current pull-down item is opened. This message is interpreted from a
keyboard event.

L_RIGHT—Moves to a new pop-up menu. If the current pop-up item has a
sub-menu, it is opened. If the current pop-up item does not have a sub-menu,
the pop-up menu of the pull-down item to the right of the current pull-down item
is opened. This message is interpreted from a keyboard event.

L_SELECT—Indicates that the object has been selected. The selection may be
the result of a mouse click or a keyboard action.

S_ADD_OBJECT—Causes a new pop-up item to be added to the object's sub-
menu. event.data will point to the new pop-up item to be added.

306 OpenZinc Application Framework—Programmer's Reference Volume 2

S_CHANGED—Causes the object to recalculate its position and size. When a
window is moved or sized, the objects on the window will need to recalculate
their positions. This message informs an object that it has changed and that it
should update itself.

S_CREATE—Causes the object to create itself. The object will calculate its
position and size and, if necessary, will register itself with the operating system.
This message is sent by the Window Manager when a window is attached to it
to cause the window and all the objects attached to the window to determine
their positions.

S_CURRENT—Causes the object to draw itself to appear current. This message
is sent by the Window Manager to a window when it becomes current. The
window, in turn, passes this message to the object on the window that is current.

S_DEINITIALIZE—Informs the object that it is about to be removed from the
application and that it should deinitialize any information. The Window Manager
sends this message to a window when the window is subtracted from the
Window Manager. The window, in turn, relays the message to all objects
attached to it.

S_INITIALIZE—Causes the object to initialize any necessary information that
may require a knowledge of its parent or siblings. When a window is added to
the Window Manager, the Window Manager sends this message to cause the
window and all the objects attached to the window to initialize themselves.

S_REGISTER_OBJECT—Causes the object to register itself with the operating
system.

S_RESET_DISPLAY—Changes the display to a different resolution, event.data
should point to the new display class to be used. If event.data is NULL, a text
mode display will be created. This event is specific to DOS and must be placed
on the event queue by the programmer. The library will never generate this
event.

S_SUBTRACT_OBJECT—Causes a pop-up item to be subtracted from the
object's sub-menu, event.data will point to the pop-up item to be subtracted.

S_VERIFY_STATUS—Causes the object to correlate its state (i.e., selected or
not selected) with the operating system.

All other events are passed by Event() to UIW_BUTTON::Event() for processing.

Chapter 14 - UIW_POP_UP_ITEM 307

NOTE: Because most graphical operating systems already process their own events
related to this object, the messages listed above may not be handled in every
environment. Wherever possible, OpenZinc allows the operating system to process its own
messages so that memory use and speed will be as efficient as possible. In these
situations, the system event can be trapped in a derived Event() function.

UIW_POP_UP_ITE M::Information

Syntax
#include <ui_win.hpp>

virtual void *Information(ZIL_INFO_REQUEST request, void "data,
ZIL_OBJECTID objectID = ID_DEFAULT);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function allows OpenZinc Application Framework objects and programmer functions to
get or modify specified information about an object.

• returnValueout is a pointer to the return data that was requested. The type of the
return data depends on the request. If the request did not require the return of
information, this value is NULL.

• requestin is a request to get or set information associated with the object. The
following requests (defined in UI_WIN.HPP) are recognized by the pop-up item:

I_CHANGED_FLAGS—Informs the object that the programmer has changed
some flags associated with the object and that the object should update itself
accordingly. This request should be sent after changing an object's flags,
particularly if the new flag settings will change the visual appearance of the
object.

308 OpenZinc Application Framework—Programmer's Reference Volume 2

I_CLEAR_FLAGS—Clears the current flag settings for the object. If this
request is sent, data should be a pointer to a variable of type UIF_FLAGS that
contains the flags to be cleared, and objectID should indicate the type of object
with which the flags are associated. For example, if the programmer wishes to
clear the WOF_FLAGS of an object, objectID should be ID_WINDOW_-
OBJECT. If the MNIF_FLAGS are to be cleared, objectID should be ID_POP_-
UP_ITEM. This allows the object to process the request at the proper level.
This request only clears those flags that are passed in; it does not simply clear
the entire field.

I_GET_FLAGS—Requests the current flag settings for the object. If this
request is sent, data should be a pointer to a variable of type UIF_FLAGS, and
objectID should indicate the type of object with which the flags are associated.
For example, if the programmer wishes to obtain the WOF_FLAGS of an object,
objectID should be ID_WINDOW_OBJECT. If the MNIF_FLAGS are desired,
objectID should be ID_POP_UP_ITEM. This allows the object to process the
request at the proper level.

I_GET_NUMBERID_OBJECT—Returns a pointer to an object whose
numberlD matches the value in data, if one exists. This object does a depth-first
search of the objects attached to it, looking for a match of the numberlD. If no
object has a numberlD that matches data, NULL is returned. If this message is
sent, data must be a pointer to a NUMBERID.

I_GET_STRINGID_OBJECT—Returns a pointer to an object whose stringlD
matches the character string in data, if one exists. This object does a depth-first
search of the objects attached to it looking for a match of the stringlD. If no
object has a stringID that matches data, NULL is returned. If this message is
sent, data must be a pointer to a string.

I_INITIALIZE_CLASS—Causes the object to initialize any basic information
that does not require a knowledge of its parent or sibling objects. This request
is sent from the constructor of the object.

I_SET_FLAGS—Sets the current flag settings for the object. If this request is
sent, data should be a pointer to a variable of type UIF_FLAGS that contains the
flags to be set, and objectID should indicate the type of object with which the
flags are associated. For example, if the programmer wishes to set the WOF_-
FLAGS of an object, objectID should be ID_WINDOW_OBJECT. If the STF_-
FLAGS are to be set, objectID should be ID_STRING. This allows the object
to process the request at the proper level. This request only sets those flags that
are passed in; it does not clear any flags that are already set.

Chapter 14 - UIW_POP_UP_ITEM 309

All other requests are passed by Information() to UIW_BUTTON::Information()
for processing.

• datain/out is used to provide information to the function or to receive the information
requested, depending on the type of request. In general, this must be space allocated
by the programmer.

• objectIDin is a ZIL_OBJECTID that specifies which type of object the request is
intended for. Because the Information() function is virtual, it is possible for an
object to be able to handle a request at more than one level of its inheritance
hierarchy. objectID removes the ambiguity by specifying which level of an object's
hierarchy should process the request. If no value is provided for objectID, the object
will attempt to interpret the request with the objectID of the most derived class.

Example
#include <ui_win.hpp>

ExampleFunction() {
MNIF_FLAGS flags;
item->Information(I_GET_FLAGS, & flags, ID_POP_UP_ITEM);

}

UIW_POP_UP_ITEM::SetDecorations

Syntax
#include <ui_win.hpp>

void SetDecorations(const ZIL_ICHAR *decorationName);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

310 OpenZinc Application Framework—Programmer's Reference Volume 2

Remarks
This function sets the decorations (i.e., images) to be used by the object. The images for
the object will be loaded and the object's myDecorations member will be updated to point
to the new ZIL_DECORATION object. By default, the object uses the images identified
in the IMG_DEF.CPP file, which compiles into the library. (If different default images
are desired, simply copy a IMG_<ISO>.CPP file from the OpenZinc\SOURCE\INTL
directory to the \OpenZinc\SOURCE directory, and rename it to IMG_DEF.CPP before
compiling the library.) The images are loaded from the I18N.DAT file, so it must be
shipped with your application.

• decorationNamein is the two-letter ISO country code identifying which images the
object should use.

UIW_POP_UP_ITE M::Subtract
UIW_POP_UP_ITEM::operator -

Syntax
#include <ui_win.hpp>

UI_WINDOW_OBJECT *Subtract(UI_WINDOW_OBJECT *object);
or

UIW_POP_UP_ITEM &operator - (UI_WINDOW_OBJECT *object);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
These functions remove a pop-up item from the UIW_POP_UP_ITEM object's sub-menu.

The first function removes a pop-up item from the UIW_POP_UP_ITEM object's sub-
menu but does not call the destructor associated with the object. The programmer is
responsible for deletion of each object explicitly subtracted from a list.

Chapter 14 - UIW_POP_UP_ITEM 311

• returnValueout is a pointer to the next pop-up item in the sub-menu. This value is
NULL if there are no more pop-up items after the subtracted pop-up item.

• objectin is a pointer to the pop-up item to be subtracted from the sub-menu.

The second overloaded operator removes a pop-up item from the UIW_POP_UP_ITEM
object's sub-menu but does not call the destructor associated with the object. This
operator overload is equivalent to calling the Subtract^) function, except that it allows
the chaining of list element removals from the UIW_POP_UP_ITEM object.

• returnValueout is a pointer to the UIW_POP_UP_ITEM object. This pointer is
returned so that the operator may be used in a statement containing other operations.

• objectin is a pointer to the pop-up item that is to be subtracted from the sub-menu.

Storage Members

This section describes those class members that are used for storage purposes.

UIW_POP_UP_ITEM::UIW_POP_UP_ITEM

Syntax
#include <ui_win.hpp>

UIW_POP_UP_ITEM(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object,
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

312 OpenZinc Application Framework—Programmer's Reference Volume 2

Remarks
This advanced constructor creates a new UIW_POP_UP_ITEM by loading the object from
a data file. Typically, the programmer does not need to use this constructor. If a pop-up
item is stored in a data file it is usually stored as part of a UIW_WINDOW and will be
loaded when the window is loaded.

• namein is the name of the object to be loaded.

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT::objectTable in "Chapter 43—UIJWIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT: .userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

UIW POP_UP_ITEM::Load

Syntax
#include <ui_win.hpp>

virtual void Load(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object, UI_ITEM *objectTable,

Chapter 14 - UIW_POP_UP_ITEM 313

UI_ITEM *userTable);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced function is used to load a UIW_POPJJP_ITEM from a persistent object
data file. It is called by the persistent constructor and is typically not used by the
programmer.

• namein is the name of the object to be loaded.

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT:.objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 7. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT::userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

314 OpenZinc Application Framework—Programmer's Reference Volume 2

UIW_POP_UP_ITEM::New

Syntax
#include <ui_win.hpp>

static UI_WINDOW_OBJECT *New(const ZIL_ICHAR *name,
ZIL_STORAGE_READ_ONLY *file =

ZIL_NULLP(ZIL_STORAGE_READ_ONLY),
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY),
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced function is used to load a persistent object from a data file. This function
is a static class member so that its address can be placed in a table used by the library to
load persistent objects from a data file.

NOTE: The application must first create a display if objects are to be loaded from a data
file.

• namein is the name of the object to be loaded.

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

Chapter 14 - UIW_POP_UP_ITEM 315

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT::objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT:. userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

UIW_POP_UP_ITEM::NewFunction

Syntax
#include <ui_win.hpp>

virtual ZIL_NEW_FUNCTION NewFunction(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This virtual function returns a pointer to the object's New() function.

• returnValueout is a pointer to the object's New() function.

316 OpenZinc Application Framework—Programmer's Reference Volume 2

UIW_POP_UP_ITEM::Store

Syntax
#include <ui_win.hpp>

virtual void Store(const ZIL_ICHAR *name, ZIL_STORAGE *file,
ZIL_STORAGE_OBJECT * object, UI_ITEM *objectTable,
UI_ITEM *userTable);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced function is used to write an object to a data file.

• namein is the name of the object to be stored.

• filein is a pointer to the ZIL_STORAGE where the persistent object will be stored.
For more information on persistent object files, see "Chapter 66—ZIL_STORAGE"
of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT where the persistent object
information will be stored. This must be allocated by the programmer. For more
information on loading persistent objects, see "Chapter 68—ZIL_STORAGE_-
OBJECT" of Programmer's Reference Volume 1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT::objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the

Chapter 14 - UIW_POP_UP_ITEM 317

description of UI_WINDOW_OB JECT::userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

318 OpenZinc Application Framework—Programmer's Reference Volume 2

CHAPTER 15 - UIW_POP_UP_MENU

The UIW_POP_UP_MENU class is used to display a menu of related option selections.
A pop-up menu is typically used in connection with a pull-down menu structure, but may
be used directly if desired. When used as part of the pull-down menu system, the
programmer will not explicitly create a pop-up menu—the pull-down items and pop-up
items manipulate the pop-up menus as needed. When using a pop-up menu as a stand-
alone object, the menu options are attached to the pop-up menu as UIW_POP_UP_ITEM
objects. To display a UIW_POP_UP_MENU object, it must be added to the Window
Manager. The figure below shows a graphical implementation of the UIW_POP_-
UP_MENU class object:

The UIW_POP_UP_MENU class is declared in UI_WIN.HPP. Its public and protected
members are:

class ZIL_EXPORT_CLASS UIW_POP_UP_MENU : public UIW_WINDOW {
public:

static ZIL_ICHAR _className[];

UIW_POP_UP_MENU(int left, int top, WNF_FLAGS wnFlags,
WOF_FLAGS woFlags = WOF_BORDER,
WOAF_FLAGS woAdvancedFlags = WOAF_NO_FLAGS);

UIW_POP_UP_MENU(int left, int top, WNF_FLAGS wnFlags, UI_ITEM *item);
virtual ~UIW_POP_UP_MENU(void);
virtual ZIL_ICHAR *ClassName(void);
virtual EVENT_TYPE Event(const UI_EVENT &event);
virtual void *Information(ZIL_INFO_REQUEST request, void *data,

ZIL_OBJECTID objectID = ID_DEFAULT);

#if defined(ZIL_LOAD)
virtual ZIL_NEW_FUNCTION NewFunction(void);
static UI_WINDOW_OBJECT *New(const ZIL_ICHAR *name,

ZIL_STORAGE_READ_ONLY *file = ZIL_NULLP(ZIL_STORAGE_READ_ONLY),
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY),
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

UIW_POP_UP_MENU(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object,
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

virtual void Load(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,

Chapter 14 - UIW_POP_UP_ITEM 319

ZIL_STORAGE_OBJECT_READ_ONLY *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

#endif
#if defined(ZIL_STORE)

virtual void Store(const ZIL_ICHAR *name, ZIL_STORAGE *file,
ZIL_STORAGE_OBJECT *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

#endif

// List members.
#if defined(ZIL_MACINTOSH)

virtual UI_WINDOW_OBJECT *Add(UI_WINDOW_OBJECT *object);
UI_WINDOW_OBJECT *Subtract(UI_WINDOW_OBJECT *object);
UIW_POP_UP_MENU &operator+(UI_WINDOW_OBJECT *object);
UIW_POP_UP_MENU &operator-(UI_WINDOW_OBJECT *object);

#endif
};

General Members

This section describes those members that are used for general purposes.

• _className contains a string identifying the class. The string is always the same
name as the class, is always in English, and never changes. For example, for the
UIW_POP_UP_MENU class, _className is "UIW_POP_UP_MENU."

UIW_POP_UP_MENU::UIW_POP_UP_MENU

Syntax
#include <ui_win.hpp>

UIW_POP_UP_MENU(int left, int top, WNF_FLAGS wnFlags,
WOF_FLAGS woFlags = WOF_BORDER,
WOAF_FLAGS woAdvancedFlags = WOAF_NO_FLAGS);
or

UIW_POP_UP_MENU(int left, int top, WNF_FLAGS wnFlags, UI_ITEM *item);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

320 OpenZinc Application Framework—Programmer's Reference Volume 2

Remarks
These constructors create a new UIW_POP_UP_MENU class object.

The first constructor takes the following arguments:

• left i n and topin is the starting position of the pop-up menu. Since the pop-up menu
is added to the Window Manager, this position is relative to the upper-left corner of
the screen. Typically, these values are in cell coordinates. If the WOF_MINICELL
flag is set, however, these values will be interpreted as minicell values. The width
and height of the pop-up menu is computed automatically by the UIW_-
POP_UP_MENU class object based on the size of the menu items.

• wnFlagsin are flags that define the operation of the pop-up menu. The following flags
(declared in UI_WIN.HPP) control the general presentation of the pop-up menu:

WNF_AUTO_SORT—Causes the menu options to be sorted in alphabetical
order.

WNF_CONTINUE_SELECT—Allows the end-user to drag through the menu
options with the mouse button pressed. If this flag is not set, the highlight on
the menu options will not follow the dragging mouse. This flag should usually
be set on a pop-up menu.

WNF_NO_FLAGS—Does not associate any special flags with the pop-up menu.
This flag should not be used in conjunction with any other WNF flags.

WNF_NO_WRAP—Will not allow arrowing up or down to wrap from the end
of the list to the beginning or vice versa.

WNF_SELECT_MULTIPLE—Allows more than one option in the list to
become selected at the same time. If this flag is set, the pop-up menu will still
close when a selection is made, but selecting another option later will not cause
the previously selected item to be un-selected. This flag is typically used if the
pop-up items in the menu have the MNIF_CHECK_MARK flag set.

• woFlagsinm are flags (common to all window objects) that determine the general
operation of the pop-up menu object. The following flags (declared in
UI_WIN.HPP) control the general presentation of, and interaction with, a UIW_-
POP_UP_MENU class object:

WOF_BORDER—Draws a border around the object. The graphical border's
appearance will depend on the operating system used, and, if in DOS, on the

Chapter 15 - UIW_POP_UP_MENU 321

graphics style being used. In text mode, a border may or may not be drawn,
depending on the text style being used. See "Appendix A—Support
Definitions" in this manual for information on changing DOS graphics mode
styles and text mode styles. This flag is set by default in the constructor.

WOF_NO_FLAGS—Does not associate any special window flags with the
object. This flag should not be used in conjunction with any other WOF flags.

WOF_NON_FIELD_REGION—Causes the object to use the remaining
available space in its parent object.

WOF_NON_SELECTABLE—Prevents the object from being selected. If this
flag is set, the user will not be able to position on nor select any menu items.
Typically, the object will be drawn in such a manner as to appear non-selectable
(e.g., it may appear lighter than a selectable field).

• woAdvancedFlagsin are flags (common to all window objects) that determine the
advanced operation of the pop-up menu object. The following flags (declared in UI_-
WIN.HPP) control the advanced operation of a pop-up menu object:

WOAF_LOCKED—Prevents the Window Manager from removing the pop-up
menu from the display. The WOAFJLOCKED flag must be cleared before the
Window Manager will allow the pop-up menu to be removed from the display.

WOAF_MODAL—Prevents any other window from receiving events from the
Window Manager. A modal window receives all events until it is removed from
the display.

WOAF_NO_DESTROY—Prevents the Window Manager from destroying the
pop-up menu. If this flag is set, the menu can be removed from the display, but
the programmer is responsible for destroying the menu.

WOAF_NO_FLAGS—Does not associate any special advanced flags with the
window object. This flag should not be used in conjunction with any other
WOAF flags.

WOAF_NORMAL_HOT_KEYS—Allows the end-user to select an option
using its hotkey by pressing the hotkey by itself, without the <Alt> key
otherwise required for selecting with a hotkey.

WOAF_TEMPORARY—Causes the pop-up menu to be displayed temporarily.
If another window is made current or a non-temporary window is added to the

322 OpenZinc Application Framework—Programmer's Reference Volume 2

Window Manager, all temporary windows are removed automatically by the
Window Manager.

The second constructor creates a pop-up menu using a pre-defined item array. These
items are used to create UIW_POP_UP_ITEM objects.

• leftin and topin is the starting position of the pop-up menu. Since the pop-up menu
is added to the Window Manager, this position is relative to the upper-left corner of
the screen. Typically, these values are in cell coordinates. If the WOF_MINICELL
flag is set, however, these values will be interpreted as minicell values. The width
and height of the pop-up menu is computed automatically by the UIW_POP_UP_-
MENU class object based on the size of the menu items.

• wnFlagsin gives information on how to display the items in the pop-up menu. The
following flags (declared in UI_WIN.HPP) control the general presentation and
operation of the pop-up menu:

WNF_AUTO_SORT—Causes the menu options to be sorted in alphabetical
order.

WNF_CONTINUE_SELECT—Allows the end-user to drag through the menu
options with the mouse button pressed. If this flag is not set, the highlight on
the menu options will not follow the dragging mouse. This flag should usually
be set on a pop-up menu.

WNF_NO_FLAGS—Does not associate any special flags with the pop-up menu.
This flag should not be used in conjunction with any other WNF flags.

WNF_NO_WRAP—Prevents the current option in the pop-up menu from
wrapping between the top and bottom options when arrowing through the list.

WNF_SELECT_MULTIPLE—Allows more than one option in the list to
become selected at the same time. If this flag is set, the pop-up menu will still
close when a selection is made, but selecting another option later will not cause
the previously selected item to be un-selected. This flag is typically used if the
pop-up items in the menu have the MNIF_CHECK_MARK flag set.

• itemin is an array of UI_ITEM structures that is used to construct a set of UIW_-
POP_UP_ITEM objects within the pop-up menu. For more information regarding
UI_ITEM structures, see "Chapter 18—UI_ITEM" of Programmer's Reference
Volume 1.

Chapter 14 - UIW_POP_UP_ITEM 323

UIW_POP_UP_MENU: ;~UIW_POP_UP_MENU

Syntax
#include <ui_win.hpp>

virtual ~UIW_POP_UP_MENU(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This virtual destructor destroys the class information associated with the UIW_POP_UP_
MENU object. All objects attached to the pop-up menu will also be destroyed.

UIW_POP_UP_MENU::Add

Syntax
#include <ui_win.hpp>

UI_WINDOW_OBJECT *Add(UI_WINDOW_OBJECT *object);
or

UIW_POP_UP_MENU &operator + (UI_WINDOW_OBJECT *object);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

324 OpenZinc Application Framework—Programmer's Reference Volume 2

Remarks
This function adds a new pop-up item to the UIW_POP_UP_MENU object.

• returnValueout is a pointer to object if the addition was successful. Otherwise,
returnValue is NULL.

• objectin is a pointer to the pop-up item to be added to the pop-up menu.

The second overloaded operator adds a pop-up item to the UIW_POP_UP_MENU object.
This operator overload is equivalent to calling the Add() function, except that it allows
the chaining of list element additions to the UIW_POP_UP_MENU object.

• returnValueout is a pointer to the UIW_POP_UP_MENU object. This pointer is
returned so that the operator may be used in a statement containing other operations.

• objectin is a pointer to the pop-up item that is to be added to the menu.

UIW_POP_UP_MENU::ClassName

Syntax
#include <ui_win.hpp>

virtual ZIL_ICHAR *ClassName(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows
• Macintosh • OSF/Motif • Curses

Remarks
This virtual function returns the object's class name.

• returnValueout is a pointer to _className.

Chapter 15 - UIW_POP_UP_MENU 325

• OS/2
• NEXTSTEP

UIW_POP_UP_MENU::Event

Syntax
#include <ui_win.hpp>

virtual EVENT_TYPE Event(const UI_EVENT &event);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function processes run-time messages sent to the pop-up menu object. It is declared
virtual so that any derived pop-up menu class can override its default operation.

• returnValueout indicates how event was processed. If the event is processed
successfully, the function returns the logical type of event that was interpreted from
event. If the event could not be processed, S_UNKNOWN is returned.

• eventin contains a run-time message for the pop-up menu object. The type of
operation performed depends on the interpretation of the event. The following logical
events are processed by Event():

L_DOWN—Moves the focus down one menu option. This message is
interpreted from a keyboard event.

L_END_SELECT—Indicates that the selection process, initiated with the L_-
BEGIN_SELECT message, is complete. For example, the end-user has pressed
and released the mouse button.

L_LEFT—Moves to a new pop-up menu if the pop-up menu is associated with
a pull-down menu structure. If the current pop-up menu is a sub-menu, it is
closed and its parent's menu is made current. If the current pop-up menu is not
a sub-menu, the pop-up menu of the pull-down item to the left of the current
pull-down item is opened. This message is interpreted from a keyboard event.

326 OpenZinc Application Framework—Programmer's Reference Volume 2

L_RIGHT—Moves to a new pop-up menu if the pop-up menu is associated with
a pull-down menu structure. If the current pop-up item has a sub-menu, it is
opened. If the current pop-up item does not have a sub-menu, the pop-up menu
of the pull-down item to the right of the current pull-down item is opened. This
message is interpreted from a keyboard event.

L_UP—Moves the focus up one menu option. This message is interpreted from
a keyboard event.

S_ADD_OBJECT—Causes a new pop-up item to be added to the menu.
event.data will point to the new pop-up item to be added.

S_CHANGED—Causes the object to recalculate its position and size. When a
window is moved or sized, the objects on the window will need to recalculate
their positions. This message informs an object that it has changed and that it
should update itself.

S_CREATE—Causes the object to create itself. The object will calculate its
position and size and, if necessary, will register itself with the operating system.
This message is sent by the Window Manager when a window is attached to it
to cause the window and all the objects attached to the window to determine
their positions.

S_DEINITIALIZE—Informs the object that it is about to be removed from the
application and that it should deinitialize any information. The Window Manager
sends this message to a window when the window is subtracted from the
Window Manager. The window, in turn, relays the message to all objects
attached to it.

S_INITIALIZE—Causes the object to initialize any necessary information that
may require a knowledge of its parent or siblings. When a window is added to
the Window Manager, the Window Manager sends this message to cause the
window and all the objects attached to the window to initialize themselves.

S_REGISTER_OBJECT—Causes the object to register itself with the operating
system.

S_SUBTRACT_OBJECT—Causes a pop-up item to be subtracted from the
menu, event.data will point to the pop-up item to be subtracted.

Chapter 15 - UIW_POP_UP_MENU 327

All other events are passed by Event to UIW_WINDOW::Event for processing.

NOTE: Because most graphical operating systems already process their own events
related to this object, the messages listed above may not be handled in every
environment. Wherever possible, OpenZinc allows the operating system to process its own
messages so that memory use and speed will be as efficient as possible. In these
situations, the system event can be trapped in a derived Event() function.

UIW_POP_UP_MENU: :Information

Syntax
#include <ui_win.hpp>

virtual void *Information(ZIL_INFO_REQUEST request, void *data,
ZIL_OBJECTID objectID = ID_DEFAULT);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function allows OpenZinc Application Framework objects and programmer functions to
get or modify specified information about an object.

• returnValueout is a pointer to the return data that was requested. The type of the
return data depends on the request. If the request did not require the return of
information, this value is NULL.

• requestin is a request to get or set information associated with the object. The
following requests (defined in UI_WIN.HPP) are recognized by the pop-up menu:

I_CHANGED_FLAGS—Informs the object that the programmer has changed
some flags associated with the object and that the object should update itself
accordingly. This request should be sent after changing an object's flags,

328 OpenZinc Application Framework—Programmer's Reference Volume 2

particularly if the new flag settings will change the visual appearance of the
object.

I_INITIALIZE_CLASS—Causes the object to initialize any basic information
that does not require a knowledge of its parent or sibling objects. This request
is sent from the constructor of the object.

All other requests are passed by Information() to UIW_WINDOW::Information()
for processing.

• datain/out is used to provide information to the function or to receive the information
requested, depending on the type of request. In general, this must be space allocated
by the programmer.

• objectIDin is a ZIL_OBJECTID that specifies which type of object the request is
intended for. Because the Information() function is virtual, it is possible for an
object to be able to handle a request at more than one level of its inheritance
hierarchy. objectID removes the ambiguity by specifying which level of an object's
hierarchy should process the request. If no value is provided for objectID, the object
will attempt to interpret the request with the objectID of the most derived class.

UIW_POP_UP_MENU::Subtract
UIW_POP_UP_MENU::operator -

Syntax
#include <ui_gen.hpp>

UI_WINDOW_OBJECT *Subtract(UI_WINDOW_OBJECT *object);

UIW_POP_UP_MENU &operator - (UI_WINDOW_OBJECT * object);

Portability
This function is available on the following environments:

or

• DOS Text
• Macintosh

• DOS Graphics • Windows
• OSF/Motif • Curses

• OS/2
• NEXTSTEP

Chapter 15 - UIW_POP_UP_MENU 329

Remarks
These functions remove a pop-up item from the UIW_POP_UP_MENU object.

The first function removes a pop-up item from the UIW_POP_UP_MENU object but does
not call the destructor associated with the object. The programmer is responsible for
deletion of each object explicitly subtracted from a list.

• returnValueout is a pointer to the next pop-up item in the menu. This value is NULL
if there are no more pop-up items after the subtracted item.

• objectin is a pointer to the pop-up item to be subtracted from the menu.

The second overloaded operator removes a pop-up item from the UIW_POP_UP_MENU
object but does not call the destructor associated with the object. This operator overload
is equivalent to calling the Subtracts) function, except that it allows the chaining of list
element removals from the UIW_POP_UP_MENU object.

• returnValueout is a pointer to the UIW_POP_UP_MENU object. This pointer is
returned so that the operator may be used in a statement containing other operations.

• objectin is a pointer to the pop-up item that is to be subtracted from the menu.

Storage Members

This section describes those class members that are used for storage purposes.

UIW_POP_UP_MENU::UIW_POP_UP_MENU

Syntax
#include <ui_win.hpp>

UIW_POP_UP_MENU(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object,
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

330 OpenZinc Application Framework—Programmer's Reference Volume 2

Portability
This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics • Windows
• OSF/Motif • Curses

• OS/2
• NEXTSTEP

Remarks
This advanced constructor creates a new UIW_POP_UP_MENU by loading the object
from a data file. Typically, the programmer does not need to use this constructor. If a
pop-up menu object is stored in a data file it is usually stored as part of a UIW_-
WINDOW and will be loaded when the window is loaded.

• namein is the name of the object to be loaded.

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT::objectTable in "Chapter 43—UIJWIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT::userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

Chapter 15 - UIW_POP_UP_MENU 331

UIW_POP_UP_MENU::Load

Syntax
#include <ui_win.hpp>

virtual void Load(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced function is used to load a UIW_POP_UP_MENU from a persistent object
data file. It is called by the persistent constructor and is typically not used by the
programmer.

• namein is the name of the object to be loaded.

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT:.objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

332 OpenZinc Application Framework—Programmer's Reference Volume 2

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT: .userTable in "Chapter43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

UIW_POP_UP_MENU::New

Syntax
#include <ui_win.hpp>

static UI_WINDOW_OBJECT *New(const ZIL_ICHAR *name,
ZIL_STORAGE_READ_ONLY *file =

ZIL_NULLP(ZIL_STORAGE_READ_ONLY),
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY),
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced function is used to load a persistent object from a data file. This function
is a static class member so that its address can be placed in a table used by the library to
load persistent objects from a data file.

NOTE: The application must first create a display if objects are to be loaded from a data
file.

• namein is the name of the object to be loaded.

Chapter 15 - UIW_POP_UP_MENU 333

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT::objectTable in "Chapter 43—UIJWIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT::userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

UIW_POP_UP_MENU::NewFunction

Syntax
#include <ui_win.hpp>

virtual ZIL_NEW_FUNCTION NewFunction(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

334 OpenZinc Application Framework—Programmer's Reference Volume 2

Remarks
This virtual function returns a pointer to the object's New() function.

• returnValueout is a pointer to the object's New() function.

UIW_POP_U P_M E N U::Store

Syntax
#include <ui_win.hpp>

virtual void Store(const ZIL_ICHAR *name, ZIL_STORAGE *file,
ZIL_STORAGE_OBJECT *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced function is used to write an object to a data file.

• namein is the name of the object to be stored.

• filein is a pointer to the ZIL_STORAGE where the persistent object will be stored.
For more information on persistent object files, see "Chapter 66—ZIL_STORAGE"
of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT where the persistent object
information will be stored. This must be allocated by the programmer. For more
information on loading persistent objects, see "Chapter 68—ZIL_STORAGE_-
OBJECT" of Programmer's Reference Volume 1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see

Chapter 15 - UIW_POP_UP_MENU 335

the description of UI_WINDOW_OBJECT:.objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT::userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

336 OpenZinc Application Framework—Programmer's Reference Volume 2

CHAPTER 16 - UIW PROMPT

The UIW_PROMPT class is used to provide lead information about another window
object. A prompt cannot become current and performs no actions. The picture below
shows a graphical implementation of UIW_PROMPT objects (the fields with the ':'
character to their right):

The UIW_PROMPT class is declared in UI_WIN.HPP. Its public and protected members
are:

class ZIL_EXPORT_CLASS UIW_PROMPT : public UI_WINDOW_OBJECT
{
public:

static ZIL_ICHAR _className[];

UIW_PROMPT(int left, int top, ZIL_ICHAR *text,
WOF_FLAGS woFlags = WOF_NO_FLAGS);

UIW_PROMPT(int left, int top, int width, ZIL_ICHAR *text,
WOF_FLAGS woFlags = WOF_NO_FLAGS);

virtual ~UIW_PROMPT(void);
virtual ZIL_ICHAR *ClassName(void);
ZIL_ICHAR *DataGet(void);
void DataSet(ZIL_ICHAR *text);
virtual EVENT_TYPE Event(const UI_EVENT &event);
virtual void information(ZIL_INFO_REQUEST request, void *data,

ZIL_OBJECTID objectID = ID_DEFAULT);

#if defined (ZIL_LOAD)
virtual ZI L_NEW_FtTNCT | ON NewFunction (void) ;
static UI_WINDOW_OBJECT *New(const ZIL_ICHAR *name,

ZIL_STORAGE_READ_ONLY *file = ZIL_NULLP(ZIL_STORAGE_READ_ONLY),
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY),
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM);

UIW_PROMPT(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,

Chapter 17 - UIW_PULL_DOWN_ITEM 337

ZIL_STORAGE_OBJECT_READ_ONLY *object,
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

virtual void Load(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

#endif
#if defined(ZIL_STORE)

virtual void Store(const ZIL_ICHAR *name, ZIL_STORAGE *file,
ZIL_STORAGE_OBJECT *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

#endif

protected:
ZIL_ICHAR *text;

virtual EVENT_TYPE Drawltem(const UI_EVENT &event, EVENT_TYPE ccode);
} ;

General Members

This section describes those members that are used for general purposes.

• _className contains a string identifying the class. The string is always the same
name as the class, is always in English, and never changes. For example, for the
UIW_PROMPT class, _className is "UIW_PROMPT."

• text is the text that is shown on the prompt.

UIW_PROMPT::UIW_PROMPT

Syntax
#include <ui_win.hpp>

UIW_PROMPT(int left, int top, ZIL_ICHAR "text,
WOF_FLAGS woFlags = WOF_NO_FLAGS);
or

UIW_PROMPT(int left, int top, int width, ZIL_ICHAR "text,
WOF_FLAGS woFlags = WOF_NO_FLAGS);

338 OpenZinc Application Framework—Programmer's Reference Volume 2

Portability
This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics • Windows
• OSF/Motif • Curses

• OS/2
• NEXTSTEP

Remarks
These overloaded constructors create a new UIW_PROMPT object.

The first overloaded constructor creates a UIW_PROMPT.

• left i n and topin is the starting position of the prompt field within its parent window.
Typically, these values are in cell coordinates. If the WOF_MINICELL flag is set,
however, these values will be interpreted as minicell values. The width and height
of the prompt will be automatically determined.

• textin is the text that is shown on the prompt. A hotkey for the prompt may be
specified by inserting the '&' character into the string before the desired hotkey
character. For example, if the string *name" is to be displayed and 'N' is to be the
hotkey, the string should be entered as "&Name." The '&' will not be displayed,
but will cause the hotkey character to be drawn appropriately. If an '&' is required
in the text that is displayed, place two '&' characters in the string (e.g., "A && B"
will display as "A & B" and the prompt will not have a hotkey). In those
environments that don't support hotkeys on objects (e.g., Macintosh, NEXTSTEP) the
'&' character will not be displayed and will have no effect. If the end-user presses
a prompt's hotkey, the field that was added to the window immediately after the
prompt will be made current.

• woFlagsin are flags (common to all window objects) that determine the general
operation of the prompt object. The following flags (declared in UI_WIN.HPP)
control the general presentation of, and interaction with, a UIW_PROMPT class
object:

WOF_BORDER—Draws a border around the object. The graphical border's
appearance will depend on the operating system used, and, if in DOS, on the
graphics style being used. In text mode, a border may or may not be drawn,
depending on the text style being used. See "Appendix A—Support
Definitions" in this manual for information on changing DOS graphics mode
styles and text mode styles. This flag is set by default in the constructor.

Chapter 16 - UIW_PROMPT 339

WOF_MINICELL—Causes the position and size values that were passed into
the constructor to be interpreted as minicells. A minicell is a fraction the size
of a normal cell. Greater precision in object placement is achieved by specifying
an object's position in minicell coordinates. A minicell is 1/1Oth the size of a
normal cell by default.

WOF_NO_ALLOCATE_DATA—Prevents the object from allocating a buffer
to store the data. If this flag is set, the programmer is responsible for allocating
the memory for the data. The programmer is also responsible for deallocating
that memory when it is no longer needed.

WOF_NO_FLAGS—Does not associate any special window flags with the
object. Setting this flag left-justifies the data. This flag should not be used in
conjunction with any other WOF flags.

The second overloaded constructor creates a UIW_PROMPT.

• left i n and topin is the starting position of the prompt field within its parent window.
Typically, these values are in cell coordinates. If the WOF_MINICELL flag is set,
however, these values will be interpreted as minicell values.

• widthin is the width of the prompt. Typically, this value is in cell coordinates. If the
WOF_MINICELL flag is set, however, this value will be interpreted as a minicell
value. The height of the prompt is determined automatically by the UIW_PROMPT
object.

• textin is the text that is shown on the prompt. A hotkey for the prompt may be
specified by inserting the '&' character into the string before the desired hotkey
character. For example, if the string *name" is to be displayed and 'N' is to be the
hotkey, the string should be entered as "&Name." The '&' will not be displayed,
but will cause the hotkey character to be drawn appropriately. If an '&' is required
in the text that is displayed, place two '&' characters in the string (e.g., "A && B"
will display as "A & B" and the prompt will not have a hotkey). In those
environments that don't support hotkeys on objects (e.g., Macintosh, NEXTSTEP) the
'&' character will not be displayed and will have no effect. If the end-user presses
a prompt's hotkey, the field that was added to the window immediately after the
prompt will be made current.

• woFlagsin are flags (common to all window objects) that determine the general
operation of the prompt object. The following flags (declared in UI_WIN.HPP)
control the general presentation of, and interaction with, a UIW_PROMPT class
object:

340 OpenZinc Application Framework—Programmer's Reference Volume 2

WOF_BORDER—Draws a border around the object. The graphical border's
appearance will depend on the operating system used, and, if in DOS, on the
graphics style being used. In text mode, a border may or may not be drawn,
depending on the text style being used. See "Appendix A—Support
Definitions" in this manual for information on changing DOS graphics mode
styles and text mode styles. This flag is set by default in the constructor.

WOF_JUSTIFY_CENTER—Center-justifies the text within the displayed
prompt.

WOF_JUSTIFY_RIGHT—Right-justifies the text within the displayed prompt.

WOF_MINICELL—Causes the position and size values that were passed into
the constructor to be interpreted as minicells. A minicell is a fraction the size
of a normal cell. Greater precision in object placement is achieved by specifying
an object's position in minicell coordinates. A minicell is 1/1 Oth the size of a
normal cell by default.

WOF_NO_ALLOCATE_DATA—Prevents the object from allocating a buffer
to store the data. If this flag is set, the programmer is responsible for allocating
the memory for the data. The programmer is also responsible for deallocating
that memory when it is no longer needed.

WOF_NO_FLAGS—Does not associate any special window flags with the
object. Setting this flag left-justifies the data. This flag should not be used in
conjunction with any other WOF flags.

Example
#include <ui_win.hpp>

ExampleFunction(UI_WINDOW_MANAGER *windowManager) {
// Create a window and add it to the window manager.
UIW_WINDOW *window = new UIW_WINDOW(0, 0, 62, 10);
*window

+ new UIW_BORDER
+ new UIW_TITLE(" Company Information ")
+ new UIW_PROMPT(2, 1, "&Name:")
+ new UIW_STRING(11, 1, 40, "", 2 56)
+ new UIW_PROMPT(2, 2, "&Address:")
+ new UIW_STRING(11, 2, 40, "" , 256)
+ new UIW_STRING(11, 3, 40, "" , 256)
+ new UIW_BUTTON(10, 6, 10, "&Save", BTF_NO_TOGGLE | BTF_AUTO_SIZE,

WOF_BORDER | WOF_JUSTIFY_CENTER)
+ new UIW_BUTTON(25, 6, 10, "&Cancel", BTF_NO_TOGGLE | BTF_AUTO_SIZE,

WOF_BORDER | WOF_JUSTIFY_CENTER)
+ new UIW_BUTTON(40, 6, 10, "&Help", BTF_NO_TOGGLE | BTF_AUTO_SIZE,

WOF_BORDER | WOF_JUSTIFY_CENTER);
*windowManager + window;

Chapter 16 - UIW_PROMPT 341

// The prompt fields will automatically be destroyed when the window
// is destroyed.

}

UIW_PROMPT::~UIW_PROMPT

Syntax

#include <ui_win.hpp>

virtual ~UIW_PROMPT(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This virtual destructor destroys the class information associated with the UIW_PROMPT
object.

UIW_PROMPT::ClassName

Syntax
#include <ui_win.hpp>

virtual ZIL_ICHAR *ClassName(void);

342 OpenZinc Application Framework—Programmer's Reference Volume 2

Portability
This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics • Windows
• OSF/Motif • Curses

• OS/2
• NEXTSTEP

Remarks

This virtual function returns the object's class name.

• returnValueout is a pointer to _className.

UIW_PROMPT::DataGet

Syntax

#include <ui_win.hpp>

ZIL_ICHAR *DataGet(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function gets the text associated with the prompt object.

returnValueout is a pointer to the text associated with the prompt.

Example

ExampleFunction(UIW_PROMPT *prompt)

ZIL_ICHAR *text = prompt->DataGet();

Chapter 16 - UIW_PROMPT 343

}

UlW_PROMPT::DataSet

Syntax
#include <ui_win.hpp>

void DataSet(ZIL_ICHAR *text);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function assigns new text to the prompt and redisplays the prompt. If no text is
passed in (i.e., text is NULL), the prompt will be redrawn.

• textin is a pointer to the new text information to be displayed on the prompt. If the
WOF_NO_ALLOCATE_DATA flag is set, text must be a string, allocated by the
programmer, that is not destroyed until the UIW_PROMPT class object is destroyed.
Otherwise, the information associated with this argument is copied by the UIW_-
PROMPT class object.

Example
#include <ui_win.hpp>

ExampleFunctionl(UIW_PROMPT *prompt) {

prompt->DataSet("&Close");
}

344 OpenZinc Application Framework—Programmer's Reference Volume 2

UIW_PROMPT::Drawltem

Syntax
#include <ui_win.hpp>

virtual EVENT_TYPE DrawItem(const UI_EVENT &event, EYENT_TYPE ccode);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This virtual advanced function is used to draw the object. If the WOS_OWNERDRAW
status is set for the object, this function will be called when drawing the prompt. This
allows the programmer to derive a new class from UIW_PROMPT and handle the
drawing of the prompt, if desired.

• returnValueout is a response based on the success of the function call. If the object
is drawn the function returns a non-zero value. If the object is not drawn, 0 is
returned.

• eventin contains the run-time message that caused the object to be redrawn.
event.region contains the region in need of updating. The following logical events
may be sent to the Drawltem() function:

S_CURRENT, S_NON_CURRENT, S_DISPLAY_ACTIVE and S_DIS-
PLAY_INACTIVE—Messages that cause the object to be redrawn.

WM_DRAWITEM—A message that causes the object to be redrawn. This
message is specific to Windows and OS/2.

Expose—A message that causes the object to be redrawn. This message is
specific to Motif.

• ccodein contains the logical interpretation of event.

Chapter 16 - UIW_PROMPT 345

UIW_PROMPT::Event

Syntax
#include <ui_win.hpp>

virtual EVENT_TYPE Event(const UI_EVENT &event);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function processes run-time messages sent to the prompt object. It is declared virtual
so that any derived prompt class can override its default operation.

• returnValueout indicates how event was processed. If the event is processed
successfully, the function returns the logical type of event that was interpreted from
event. If the event could not be processed, S_UNKNOWN is returned.

• eventin contains a run-time message for the prompt object. The type of operation
performed depends on the interpretation of the event. The following logical events
are processed by Event():

S_CHANGED—Causes the object to recalculate its position and size. When a
window is moved or sized, the objects on the window will need to recalculate
their positions. This message informs an object that it has changed and that it
should update itself.

S_CREATE—Causes the object to create itself. The object will calculate its
position and size and, if necessary, will register itself with the operating system.
This message is sent by the Window Manager when a window is attached to it
to cause the window and all the objects attached to the window to determine
their positions.

S_INITIALIZE—Causes the object to initialize any necessary information that
may require a knowledge of its parent or siblings. When a window is added to

346 OpenZinc Application Framework—Programmer's Reference Volume 2

the Window Manager, the Window Manager sends this message to cause the
window and all the objects attached to the window to initialize themselves.

S_REGISTER_OBJECT—Causes the object to register itself with the operating
system.

All other events are passed by Event() to UI_WINDOW_OBJECT::Event() for
processing.

NOTE: Because most graphical operating systems already process their own events
related to this object, the messages listed above may not be handled in every
environment. Wherever possible, OpenZinc allows the operating system to process its own
messages so that memory use and speed will be as efficient as possible. In these
situations, the system event can be trapped in a derived Event() function.

UIW_PROMPT::lnformation

Syntax
#include <ui_win.hpp>

virtual void *Information(ZIL_INFO_REQUEST request, void *data,
ZIL_OBJECTID objectID = ID_DEFAULT);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function allows OpenZinc Application Framework objects and programmer functions to
get or modify specified information about an object.

• returnValueout is a pointer to the return data that was requested. The type of the
return data depends on the request. If the request did not require the return of
information, this value is NULL.

Chapter 16 - UIW_PROMPT 347

• requestin is a request to get or set information associated with the object. The
following requests (defined in UI_WIN.HPP) are recognized by the prompt:

I_CHANGED_FLAGS—Informs the object that the programmer has changed
some flags associated with the object and that the object should update itself
accordingly. This request should be sent after changing an object's flags,
particularly if the new flag settings will change the visual appearance of the
object.

I_COPY_TEXT—Copies the text associated with the object into a buffer
provided by the programmer. If this request is sent, data must be the address of
a buffer where the prompt's text will be copied. This buffer must be large
enough to contain all of the characters associated with the prompt and the
terminating NULL character.

I_GET_TEXT—Returns a pointer to the text associated with the object. If this
request is sent, data should be a doubly-indirected pointer to ZIL_ICHAR. This
request does not copy the text into a new buffer.

I_INITIALIZE_CLASS—Causes the object to initialize any basic information
that does not require a knowledge of its parent or sibling objects. This request
is sent from the constructor of the object.

I_SET_TEXT—Sets the text associated with the object. This request will also
redisplay the object with the new text, data should be a pointer to the new text.

All other requests are passed by Information) to UI_WINDOW_OBJECT::-
Information() for processing.

• datain/oul is used to provide information to the function or to receive the information
requested, depending on the type of request. In general, this must be space allocated
by the programmer.

• objectIDin is a ZIL_OBJECTID that specifies which type of object the request is
intended for. Because the Information() function is virtual, it is possible for an
object to be able to handle a request at more than one level of its inheritance
hierarchy. objectID removes the ambiguity by specifying which level of an object's
hierarchy should process the request. If no value is provided for objectID, the object
will attempt to interpret the request with the objectID of the actual object type.

348 OpenZinc Application Framework—Programmer's Reference Volume 2

Example
#include <ui_win.hpp>

ExampleFunction() {
ZIL_ICHAR string[30];
prompt-information(I_COPY_TEXT, &string),

prompt1-Information (I_SET_TEXT, "First name:")
prompt2->Information(I_SET_TEXT, "Last name:");

Storage Members

This section describes those class members that are used for storage purposes.

UIW_PROMPT::UIW_PROMPT

Syntax
#include <ui_win.hpp>

UIW_PROMPT(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object,
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced constructor creates a new UIW_PROMPT by loading the object from a

Chapter 16 - UIW_PROMPT 349

data file. Typically, the programmer does not need to use this constructor. If a prompt
is stored in a data file it is usually stored as part of a UIW_WINDOW and will be loaded
when the window is loaded.

• namein is the name of the object to be loaded.

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT:.objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT:. userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

UIW_PROMPT::Load

Syntax
#include <ui_win.hpp>

virtual void Load(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

350 OpenZinc Application Framework—Programmer's Reference Volume 2

Portability
This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics • Windows
• OSF/Motif • Curses

• OS/2
• NEXTSTEP

Remarks
This advanced function is used to load a UIW_PROMPT from a persistent object data file.
It is called by the persistent constructor and is typically not used by the programmer.

• namein is the name of the object to be loaded.

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT:.objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT:. userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

Chapter 16 - UIW_PROMPT 351

UIW_PROMPT::New

Syntax
#include <ui_win.hpp>

static UI_WINDOW_OBJECT *New(const ZIL_ICHAR *name,
ZIL_STORAGE_READ_ONLY *file =

ZIL_NULLP(ZIL_STORAGE_READ_ONLY),
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY),
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced function is used to load a persistent object from a data file. This function
is a static class member so that its address can be placed in a table used by the library to
load persistent objects from a data file.

NOTE: The application must first create a display if objects are to be loaded from a data
file.

• namein is the name of the object to be loaded.

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

352 OpenZinc Application Framework—Programmer's Reference Volume 2

UIW_PROMPT::NewFunction

Syntax
#include <ui_win.hpp>

virtual ZIL_NEW_FUNCTION NewFunction(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks

This virtual function returns a pointer to the object's New() function.

• returnValueout is a pointer to the object's New() function.

Chapter 16 - UIW_PROMPT 353

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT:.objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT::userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

UIW_PROMPT::Store

Syntax
#include <ui_win.hpp>

virtual void Store(const ZIL_ICHAR *name, ZIL_STORAGE *file,
ZIL_STORAGE_OBJECT *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced function is used to write an object to a data file.

• namein is the name of the object to be stored.

• filein is a pointer to the ZIL_STORAGE where the persistent object will be stored.
For more information on persistent object files, see "Chapter 66—ZIL_STORAGE"
of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT where the persistent object
information will be stored. This must be allocated by the programmer. For more
information on loading persistent objects, see "Chapter 68—ZIL_STORAGE_-
OBJECT" of Programmer's Reference Volume 1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT::objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the

354 OpenZinc Application Framework—Programmer's Reference Volume 2

description of UI_WINDOW_OBJECT::userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

Chapter 16 - UIW_PROMPT 355

OpenZinc Application Framework—Programmer's Reference Volume 2 356

CHAPTER 17 - UIW_PULL_DOWN_ITEM

The UIW_PULL_DOWN_ITEM class is used to present the menu option categories in
a window. Pull-down items are attached to a pull-down menu. Each pull-down item has
an associated pop-up menu that presents the options available for that pull-down item.
A pull-down item typically has a hotkey that allows it to be selected quickly from
anywhere on the window. The figure below shows a graphical implementation of a pull-
down menu containing several UIW_PULL_DOWN_ITEM objects (shown as "Control,"
"Window," "Event," and "Help"):

NOTE: On the Macintosh, a pull-down item cannot perform any action other than to
display its pop-up menu when selected. Thus, while in other environments a pull-down
item can place a message on the event queue or will call a user function, on the
Macintosh it will do nothing.

The UIW_PULL_DOWN_ITEM class is declared in UI_WIN.HPP. Its public and
protected members are:

class ZIL_EXPORT_CLASS UIW_PULL_DOWN_ITEM : public UIW_BUTTON
{
public:

static ZIL_ICHAR _className[];
UIW_POP_UP_MENU menu;

UIW_PULL_DOWN_ITEM(ZIL_ICHAR *text, WNF_FLAGS wnFlags = WNF_NO_FLAGS,
ZIL_USER_F UNCTION userFunction = ZIL_NULLF(ZIL_USER_FUNCTION),
EVENT_TYPE value = 0);

UIW_PULL_DOWN_ITEM(ZIL_ICHAR *text, WNF_FLAGS wnFlags, UI_ITEM *item);
virtual ~UIW_PULL_DOWN_ITEM(void);
virtual ZIL_ICHAR *ClassName(void);
virtual EVENT_TYPE Event(const UI_EVENT &event);
virtual void *Information(ZIL_INFO_REQUEST request, void *data,

ZIL_OBJECTID objectID = ID_DEFAULT);

#if defined (ZIL_LOAD)
virtual ZIL_NEW_FUNCTION NewFunction(void);
static UI_WINDOW_OBJECT *New(const ZIL_ICHAR *name,

ZIL_STORAGE_READ_ONLY *file = ZIL_NULLP(ZIL_STORAGE_READ_ONLY),
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY),
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),

Chapter 17 - UIW_PULL_DOWN_ITEM 357

UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));
UIW_PULL_DOWN_ITEM(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,

ZIL_STORAGE_OBJECT_READ_ONLY *object,
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *USerTable = ZIL_NULLP(UI_ITEM));

virtual void Load(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

#endif
#if defined(ZIL_STORE)

virtual void Store(const ZIL_ICHAR *name, ZIL_STORAGE *file,
ZIL_STORAGE_OBJECT *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

#endif

// List members.
UI_WINDOW_OBJECT *Add(UI_WINDOW_OBJECT *object);
UI_WINDOW_OBJECT *Subtract(UI_WINDOW_OBJECT *object);
UIW_PULL_DOWN_ITEM &operator+(UI_WINDOW_OBJECT *object);
UIW_PULL_DOWN_ITEM ^operator-(UI_WINDOW_OBJECT *object);

protected:
virtual EVENT_TYPE Drawltem(const UI_EVENT &event, EVENT_TYPE ccode);

} ;

General Members

This section describes those members that are used for general purposes.

• _className contains a string identifying the class. The string is always the same
name as the class, is always in English, and never changes. For example, for the
UIW_PULL_DOWN_ITEM class, _className is ''UIW_PULL_DOWN_ITEM.''

• menu is the UIW_POP_UP_MENU that maintains the pop-up menu options that are
displayed when the pull-down item is selected.

UIW_PULL_DOWN_ITEM::UIW_PULL_DOWN_ITEM

Syntax
#include <ui_win.hpp>

UIW_PULL_DOWN_ITEM(ZIL_ICHAR *text,
WNF_FLAGS wnFlags = WNF_NO_FLAGS,
ZIL_USER_FUNCTION userFunction = ZIL_NULLF(ZIL_USER_FUNCTION),
EVENT_TYPE value = 0);
or

UIW_PULL_DOWN_ITEM(ZIL_ICHAR *text, WNF_FLAGS wnFlags, UI_ITEM "item);

358 OpenZinc Application Framework—Programmer's Reference Volume 2

Portability
This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics • Windows
• OSF/Motif • Curses

• OS/2
• NEXTSTEP

Remarks
These overloaded constructors create a new UIW_PULL_DOWN_ITEM class object.

The first constructor takes the following arguments:

• textin is the text that is shown in the pull-down item. A hotkey for the pull-down
item may be specified by inserting the '&' character into the string before the desired
hotkey character. For example, if the string "Exit" is to be displayed and 'x' is to
be the hotkey, the string should be entered as "E&xit." The '&' will not be
displayed, but will cause the hotkey character to be drawn appropriately. If an '&'
is required in the text that is displayed, place two '&' characters in the string (e.g.,
"A && B" will display as "A & B" and the pull-down item will not have a
hotkey). This string is copied by the UIW_PULL_DOWN_ITEM class unless the
WOF_NO_ALLOCATE_DATA flag is set. If this flag is set, text must be space,
allocated by the programmer, that is not deleted until the UIW_PULL_DOWN_ITEM
object has been deleted.

• wnFlagsin are flags that define the operation of the pull-down item's pop-up menu.
The following flags (declared in UI_WIN.HPP) control the general presentation of
the item's pop-up menu:

WNF_AUTO_SORT—Causes the menu options to be sorted in alphabetical

WNF_CONTINUE_SELECT—Allows the end-user to drag through the menu
options with the mouse button pressed. If this flag is not set, the highlight on
the menu options will not follow the dragging mouse. This flag should usually
be set on a pop-up menu.

WNF_NO_FLAGS—Does not associate any special flags with the pop-up menu.
This flag should not be used in conjunction with any other WNF flags. This flag
is set by default in the constructor.

order.

Chapter 17 - UIW_PULL_DOWN_ITEM 359

WNF_NO_WRAP—Prevents the current option in the pop-up menu from
wrapping between the top and bottom options when arrowing through the menu.

WNF_SELECT_MULTIPLE—Allows more than one option in the menu to
become selected at the same time. If this flag is set, the pop-up menu will still
close when a selection is made, but selecting another option later will not cause
the previously selected item to be un-selected. This flag is typically used if the
pop-up items in the menu have the MNIF_CHECK_MARK flag set.

• userFunctionin is a programmer defined function that will be called by the library at
certain points in the user's interaction with an object. A user function should only
be associated with a pull-down item if the item does not have a menu of options. As
mentioned above, a pull-down item on the Macintosh will not perform any action
other than to display an option menu. Thus, userFunction will be ignored on the
Macintosh. The user function will be called by the library when:

1—the user moves onto the field,

2—the <ENTER> key is pressed while the pull-down item is current or the
mouse is clicked on the object, or

3—the user moves to a different field in the window or to a different window.

Because the user function is called at these times, the programmer can do data
validation or any other type of necessary operation. The definition of the
userFunction is as follows:

EVENT_TYPE FunctionName(UI_WINDOW_OBJECT *object,
UI_EVENT &event, EVENT_TYPE ccode);

returnValueout indicates if an error has occurred. returnValue should be 0 if the
no error occurred. Otherwise, the programmer should call the error system with
an appropriate error message and return -1.

objectin is a pointer to the object for which the user function is being called.
This argument must be typecast by the programmer if class-specific members
need to be accessed.

eventin is the run-time message passed to the object.

360 OpenZinc Application Framework—Programmer's Reference Volume 2

ccodein is the logical or system code that caused the user function to be called.
This code (declared in UI_WIN.HPP) will be one of the following constant
values:

L_SELECT—The <ENTER> key was pressed while the field was current
or the pull-down item was clicked on with the mouse.

S_CURRENT—The object just received focus because the user moved to
it from another field or window.

S_NON_CURRENT—The object just lost focus because the user moved to
another field or window.

• valuein can be used as an identifier to distinguish between several pull-down items in
a common user function. For example, the programmer could associate the value 0
with a "Save" menu item and a value of 1 with a "Save As" menu item. This
allows the programmer to define one user function that can determine the action to
take based on the pull-down item's value.

The second constructor creates a pull-down item with a pre-defined item array.

• textin is the text that is shown in the pull-down item. For a complete description of
text, see the description of the first constructor.

• wnFlagsin are flags that define the operation of the pull-down item's pop-up menu.
For a complete description of text, see the description of the first constructor.

• itemin is an array of UI_ITEM structures that are used to construct a set of pop-up
items within the pull-down item's pop-up menu. For more information regarding the
use of the UI_ITEM structure, see "Chapter 18—UI_ITEM" in Programmer's
Reference Volume 1.

Example
#include <ui_win.hpp>

ExampleFunction(UI_WINDOW_MANAGER *windowManager)
{

// Create a window with pull-down items.
UIW_WINDOW *window = new UIW_WINDOW(0, 0, 40, 10);
*window

+ new UIW_BORDER
+ new UIW_TITLE("Sample menus")
+ &(*new UIW_PULL_DOWN_MENU(1)

+ &(* new UIW_PULL_DOWN_ITEM("Item&1")
+ new UIW_POP_UP_ITEM("Option 1.1")
+ new UIW_POP_UP_ITEM("Option 1.2"))

Chapter 17 - UIW_PULL_DOWN_ITEM 361

+ &(*new UIW_PULL_DOWN_ITEM("Item&2")
+ new UIW_POP_UP_ITEM("Option 2.1"))

+ new UIW_PULL_D0WN_ITEM("Item&3"));
*windowManager + window;

// The pull-down items will automatically be destroyed when the window
// is destroyed.

}

ExampleFunction2(UI_WINDOW_MANAGER *windowManager) {
UI_ITEM iteml[] = {

{ 11, NULL,
{ 12, NULL,
{ 0, NULL,

} ;

"Option 1.1", MNIF_NO_FLAGS },
"Option 1.2", MNIF_NO_FLAGS },
NULL, 0 }

UI_ITEM item2[] = {
{ 21, NULL,
{ 22, NULL,
{ 0, NULL,

} ;

"Option 2.1", MNIF_NO_FLAGS }.
"Option 2.2", MNIF_NO_FLAGS },
NULL, 0 }

// Create a window with pull-down items.
UIW_WINDOW *window = new UIW_WINDOW(0, 0, 40, 10);
*window

+ new UIW_BORDER
+ new UIW_TITLE("Sample menus")
+ &(*new UIW_PULL_DOWN_MENU(1)

+ new UIW_PULL_DOWN_ITEM("Item&l", WNF_NO_FLAGS, iteml)
+ new UIW_PULL_DOWN_ITEM("Item&2", WNF_NO_FLAGS, item2)
+ new UIW_PULL_DOWN_ITEM("Item&3"));

*windowManager + window;

// The pull-down items will automatically be destroyed when the window
// is destroyed.

}

UIW_PULL_DOWN_ITEM::~UIW_PULL_DOWN_ITEM

Syntax
#include <ui_win.hpp>

virtual ~UIW_PULL_DOWN_ITEM(void);

362 OpenZinc Application Framework—Programmer's Reference Volume 2

Portability
This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics • Windows
• OSF/Motif • Curses

• OS/2
• NEXTSTEP

Remarks
This virtual destructor destroys the class information associated with the UIW_PULL_-
DOWN_ITEM object. All objects attached to the pull-down item will also be destroyed.

UIW_PULL_DOWN_ITEM::Add
UIW_PULL_DOWN_ITEM::operator +

Syntax
#include <ui_win.hpp>

UI_WINDOW_OBJECT *Add(UI_WINDOW_OBJECT * object);

UIW_PULL_DOWN_ITEM &operator + (UI_WINDOW_OBJECT *object);

Portability
This function is available on the following environments:

These overloaded functions are used to add a new pop-up item to the UIW_PULL_-
DOWN_ITEM object's menu.

The first overloaded function adds a new pop-up item to the UIW_PULL_DOWN_ITEM
object's menu.

• returnValueout is a pointer to object if the addition was successful. Otherwise,
returnValue is NULL.

or

• DOS Text
• Macintosh

• DOS Graphics • Windows
• OSF/Motif • Curses

• OS/2
• NEXTSTEP

Remarks

Chapter 17 - UIW_PULL_DOWN_ITEM 363

• objectin is a pointer to the pop-up item to be added to the menu.

The second overloaded operator adds a new pop-up item to the UIW_PULL_DOWN_-
ITEM object's menu. This operator overload is equivalent to calling the Add() function
except that it allows the chaining of pop-up item additions to the UIW_PULL_-
DOWN_ITEM object.

• returnValueout is a pointer to the UIW_PULL_DOWN_ITEM object. This pointer is
returned so that the operator may be used in a statement containing other operations.

• objectin is a pointer to the new pop-up item that is to be added to the menu.

UlW_PU LL_DOWN _ITEM::ClassName

Syntax
#include <ui_win.hpp>

virtual ZIL_ICHAR *ClassName(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This virtual function returns the object's class name.

• returnValueout is a pointer to _className.

364 OpenZinc Application Framework—Programmer's Reference Volume 2

UIW_PULL_DOWN_ITEM::Drawltem

Syntax
#include <ui_win.hpp>

virtual EVENT_TYPE DrawItem(const UI_EVENT &event, EVENT_TYPE ccode);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This virtual advanced function is used to draw the object. If the WOS_OWNERDRAW
status is set for the object, this function will be called when drawing the pull-down item.
This allows the programmer to derive a new class from UIW_PULL_DOWN_ITEM and
handle the drawing of the pull-down item, if desired.

• returnValueout is a response based on the success of the function call. If the object
is drawn, the function returns a non-zero value. If the object is not drawn, 0 is
returned.

• eventin contains the run-time message that caused the object to be redrawn.
event.region contains the region in need of updating. The following logical events
may be sent to the Drawltem() function:

S_CURRENT, S_NON_CURRENT, S_DISPLAY_ACTIVE and S_DIS-
PLAY_INACTIVE—Cause the object to be redrawn.

WM_DRAWITEM—Causes the object to be redrawn. This message is specific
to Windows and OS/2.

Expose—Causes the object to be redrawn. This message is specific to Motif.

• ccodein contains the logical interpretation of event.

Chapter 17 - UIW_PULL_DOWN_ITEM 365

UIW_PU LL_DOWN_ITEM::Event

Syntax
#include <ui_win.hpp>

virtual EVENT_TYPE Event(const UI_EVENT &event);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function processes run-time messages sent to the pull-down item object. It is
declared virtual so that any derived pull-down item class can override its default
operation.

• returnValueout indicates how event was processed. If the event is processed
successfully, the function returns the logical type of event that was interpreted from
event. If the event could not be processed, S_UNKNOWN is returned.

• eventin contains a run-time message for the pull-down item object. The type of
operation performed depends on the interpretation of the event. The following logical
events are processed by Event():

L_BEGIN_SELECT—Indicates that the end-user began the selection of the
object by pressing the mouse button down while on the object.

L_DOWN—Causes the pull-down item's menu to be displayed if it is not
already displayed. This message is interpreted from a keyboard event.

L_SELECT—Indicates that the object has been selected. The selection may be
the result of a mouse click or a keyboard action.

L_UP—Causes the pull-down item's menu to be displayed if it is not already
displayed. This message is interpreted from a keyboard event.

366 OpenZinc Application Framework—Programmer's Reference Volume 2

S_ADD_OBJECT—Causes a new pop-up item to be added to the object's
menu, event.data will point to the new pop-up item to be added.

S_CHANGED—Causes the object to recalculate its position and size. When a
window is moved or sized, the objects on the window will need to recalculate
their positions. This message informs an object that it has changed and that it
should update itself.

S_CREATE—Causes the object to create itself. The object will calculate its
position and size and, if necessary, will register itself with the operating system.
This message is sent by the Window Manager when a window is attached to it
to cause the window and all the objects attached to the window to determine
their positions.

S_CURRENT—Causes the object to draw itself to appear current. This message
is sent by the Window Manager to a window when it becomes current. The
window, in turn, passes this message to the object on the window that is current.

S_DEINITIALIZE—Informs the object that it is about to be removed from the
application and that it should deinitialize any information. The Window Manager
sends this message to a window when the window is subtracted from the
Window Manager. The window, in turn, relays the message to all objects
attached to it.

S_INITIALIZE—Causes the object to initialize any necessary information that
may require a knowledge of its parent or siblings. When a window is added to
the Window Manager, the Window Manager sends this message to cause the
window and all the objects attached to the window to initialize themselves.

S_NON_CURRENT—Indicates that the object has just become non-current.
This message is received when the user moves to another field or window.

S_REDISPLAY—Causes the object to redraw.

S_REGISTER_OBJECT—Causes the object to register itself with the operating
system.

S_RESET_DISPLAY—Changes the display to a different resolution, event.data
should point to the new display class to be used. If event.data is NULL, a text
mode display will be created. This event is specific to DOS and must be placed
on the event queue by the programmer. The library will never generate this
event.

Chapter 17 - UIW_PULL_DOWN_ITEM 367

S_SUBTRACT_OBJECT—Causes a pop-up item to be subtracted from the
object's menu, event.data will point to the pop-up item to be subtracted.

All other events are passed by Event() to UIW_BUTTON::Event() for processing.

NOTE: Because most graphical operating systems already process their own events
related to this object, the messages listed above may not be handled in every
environment. Wherever possible, OpenZinc allows the operating system to process its own
messages so that memory use and speed will be as efficient as possible. In these
situations, the system event can be trapped in a derived Event() function.

UIW_PULL_DOWN_ITEM::lnformation

Syntax
#include <ui_win.hpp>

virtual void *Information(ZIL_INFO_REQUEST request, void *data,
ZIL_OBJECTID objectID = ID_DEFAULT);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function allows OpenZinc Application Framework objects and programmer functions to
get or modify specified information about an object.

• returnValueout is a pointer to the return data that was requested. The type of the
return data depends on the request. If the request did not require the return of
information, this value is NULL.

• requestin is a request to get or set information associated with the object. The
following requests (defined in UI_WIN.HPP) are recognized by the pull-down item:

368 OpenZinc Application Framework—Programmer's Reference Volume 2

I_CHANGED_FLAGS—Informs the object that the programmer has changed
some flags associated with the object and that the object should update itself
accordingly. This request should be sent after changing an object's flags,
particularly if the new flag settings will change the visual appearance of the
object.

I_GET_NUMBERID_OBJECT—Returns a pointer to an object whose
numberlD matches the value in data, if one exists. This object does a depth-first
search of the objects attached to it, looking for a match of the numberlD. If no
object has a numberlD that matches data, NULL is returned. If this message is
sent, data must be a pointer to a NUMBERID.

I_GET_STRINGID_OBJECT—Returns a pointer to an object whose stringlD
matches the character string in data, if one exists. This object does a depth-first
search of the objects attached to it, looking for a match of the stringlD. If no
object has a stringlD that matches data, NULL is returned. If this message is
sent, data must be a pointer to a string.

I_INITIALIZE_CLASS—Causes the object to initialize any basic information
that does not require a knowledge of its parent or sibling objects. This request
is sent from the constructor of the object.

All other requests are passed by Information() to UIW_BUTTON::Information()
for processing.

• datain/out is used to provide information to the function or to receive the information
requested, depending on the type of request. In general, this must be space allocated
by the programmer.

• objectIDin is a ZIL_OBJECTID that specifies which type of object the request is
intended for. Because the Information() function is virtual, it is possible for an
object to be able to handle a request at more than one level of its inheritance
hierarchy. objectID removes the ambiguity by specifying which level of an object's
hierarchy should process the request. If no value is provided for objectID, the object
will attempt to interpret the request with the objectID of the actual object type.

Chapter 17 - UIW_PULL_DOWN_ITEM 369

UIW_PULL_DOWN_ITEM::Subtract
UIW_PULL_DOWN_ITEM::operator -

Syntax
#include <ui_gen.hpp>

UI_WINDOW_OBJECT *Subtract(UI_WINDOW_OBJECT *object);

UIW_PULL_DOWN_ITEM &operator - (UI_WINDOW_OBJECT *object);

Portability
This function is available on the following environments:

Remarks
These functions remove an element from the UIW_PULL_DOWN_ITEM object's menu.

The first function removes a pop-up item from the UIW_PULL_DOWN_ITEM object's
menu but does not call the destructor associated with the object. The programmer is
responsible for deletion of each object explicitly subtracted from a list.

• returnValueout is a pointer to the next pop-up item in the menu. This value is NULL
if there are no more pop-up items after the subtracted pop-up item.

• elementin is a pointer to the pop-up item to be subtracted from the menu.

The second overloaded operator removes a pop-up item from the UIW_PULL_DOWN_-
ITEM object's menu but does not call the destructor associated with the object. This
operator overload is equivalent to calling the Subtract() function, except that it allows
the chaining of pop-up item removals from the UIW_PULL_DOWN_ITEM object's
menu.

• returnValueout is a pointer to the UIW_PULL_DOWN_ITEM object. This pointer is
returned so that the operator may be used in a statement containing other operations.

• objectin is a pointer to the pop-up item that is to be subtracted from the menu.

or

• DOS Text
• Macintosh

• DOS Graphics • Windows
• OSF/Motif • Curses

• OS/2
• NEXTSTEP

370 OpenZinc Application Framework—Programmer's Reference Volume 2

Storage Members

This section describes those class members that are used for storage purposes.

UIW_PULL_DOWN_ITEM::UIW_PULL_DOWN_ITEM

Syntax
#include <ui_win.hpp>

UIW_PULL_DOWN_ITEM(const ZIL_ICHAR *name,
ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object,
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced constructor creates a new UIW_PULL_DOWN_ITEM by loading the
object from a data file. Typically, the programmer does not need to use this constructor.
If a pull-down item is stored in a data file it is usually stored as part of a UIW_-
WINDOW and will be loaded when the window is loaded.

• namein is the name of the object to be loaded.

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter

Chapter 17 - UIW_PULL_DOWN_ITEM 371

69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT:.objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT::userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

UIW PULL_DOWN ITEM::Load

Syntax
#include <ui_win.hpp>

virtual void Load(const ZIL JCHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced function is used to load a UIW_PULL_DOWN_ITEM from a persistent
object data file. It is called by the persistent constructor and is typically not used by the
programmer.

372 OpenZinc Application Framework—Programmer's Reference Volume 2

• namein is the name of the object to be loaded.

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT:.objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT:. userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

UIW PULL DOWN_ITEM::New

Syntax
#include <ui_win.hpp>

static UI_WINDOW_OBJECT *New(const ZIL_ICHAR *name,
ZIL_STORAGE_READ_ONLY *file =

ZIL_NULLP(ZIL_STORAGE_READ_ONLY),
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY),
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

Chapter 17 - UIW_PULL_DOWN_ITEM 373

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced function is used to load a persistent object from a data file. This function
is a static class member so that its address can be placed in a table used by the library to
load persistent objects from a data file.

NOTE: The application must first create a display if objects are to be loaded from a data
file.

• namein is the name of the object to be loaded.

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT::objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT::userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

374 OpenZinc Application Framework—Programmer's Reference Volume 2

UIW_PULL_DOWN_ITEM::NewFunction

Syntax
#include <ui_win.hpp>

virtual ZIL_NEW_FUNCTION NewFunction(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks

This virtual function returns a pointer to the object's New() function.

• returnValueout is a pointer to the object's New() function.

UIW_PULL_DOWN_ITEM::Store

Syntax
#include <ui_win.hpp>

virtual void Store(const ZIL_ICHAR *name, ZIL_STORAGE *file,
ZIL_STORAGE_OBJECT *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows
• Macintosh • OSF/Motif • Curses

• OS/2
• NEXTSTEP

Chapter 17 - UIW_PULL_DOWN_ITEM 375

Remarks
This advanced function is used to write an object to a data file.

• namein is the name of the object to be stored.

• filein is a pointer to the ZIL_STORAGE where the persistent object will be stored.
For more information on persistent object files, see "Chapter 66—ZIL_STORAGE"
of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT where the persistent object
information will be stored. This must be allocated by the programmer. For more
information on loading persistent objects, see "Chapter 68—ZIL_STORAGE_-
OBJECT" of Programmer's Reference Volume 1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT::objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT::userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

376 OpenZinc Application Framework—Programmer's Reference Volume 2

CHAPTER 18 - UIW_PULL_DOWN_MENU

The UIW_PULL_DOWN_MENU class object is used as a controlling structure for menu
items. The pull-down menu appears as a line of options across the top of the window,
immediately below the title bar. If more options are added to the menu than can fit on
a single line, or if the window is sized narrower so that the options will not fit on one
line, the menu will expand and the options will wrap so that they are displayed on
multiple lines. The figure below shows a graphical implementation of a UIW_PULL_-
DOWN_MENU class object with four pull-down items (shown as "Control,"
"Window," "Event," and "Help"):

NOTE: Microsoft Windows does not allow pull-down menus on child windows. This
applies whether the child window is an MDI child or simply a child window.

On the Macintosh, only one pull-down menu per application is displayed at any given
time. If a window other than the one with which the pull-down menu is associated
becomes current, and the new current window does not have a pull-down menu, the
selections on the pull-down menu will become non-selectable. If the original window
becomes current again, these selections will become selectable.

The UIW_PULL_DOWN_MENU class is declared in UI_WIN.HPP. Its public and
protected members are:

class ZIL_EXPORT__CLASS UIW_PULL_DOWN_MENU : public UIW_WINDOW {
public:

static ZIL_ICHAR _className[];

UIW_PULL_DOWN_MENU(int indentation = 0,
WOF_FLAGS woFlags = WOF_BORDER | WOF_NON_FIELD_REGION |

WOF_SUPPORT_OBJECT,
WOAF_FLAGS woAdvancedFlags = WOAF_NO_FLAGS);

UIW_PULL_DOWN_MENU(int indentation, UI_ITEM *item);
virtual ~UIW_PULL_DOWN_MENU(void);
virtual ZIL_ICHAR *ClassName(void);
virtual EVENT_TYPE Event(const UI_EVENT &event);
virtual void * Information(ZIL_INFO_REQUEST request, void *data,

ZIL_OBJECTID objectID = ID_DEFAULT);

Chapter 17 - UIW_PULL_DOWN_ITEM 377

#if defined(ZIL_MACINTOSH)
UIW_POP_UP_ITEM *ItemDepthSearch(long mSelect);

#endif

#if defined(ZIL_LOAD)
virtual ZIL_NEW_FUNCTION NewFunction(void);
static UI_WINDOW_OBJECT *New(const ZIL_ICHAR *name,

ZIL_STORAGE_READ_ONLY *file = ZIL_NULLP(ZIL_STORAGE_READ_ONLY),
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY),
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

UIW_PULL_DOWN_MENU(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object,
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM) ,
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

virtual void Load(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

#endif
#if defined(ZIL_STORE)

virtual void Store(const ZIL_ICHAR *name, ZIL_STORAGE *file,
ZIL_STORAGE_OBJECT *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

#endif

// List members.
#if defined(ZIL_MACINTOSH)

virtual UI_WINDOW_OBJECT *Add(UI_WINDOW_OBJECT *object);
UI_WINDOW_OBJECT *Subtract(UI_WINDOW_OBJECT *object);
UIW_PULL_DOWN_MENU &operator+(UI_WINDOW_OBJECT *object);
UIW_PULL_DOWN_MENU &operator-(UI_WINDOW_OBJECT *object);

#endif

protected:
int indentation;

} ;

General Members

This section describes those members that are used for general purposes.

• _className contains a string identifying the class. The string is always the same
name as the class, is always in English, and never changes. For example, for the
UIW_PULL_DOWN_MENU class, _className is "UIW_PULL_DOWN_MENU."

• indentation is the number of cells over from the left edge of the menu where the first
menu item should be displayed. The indented space is shown as blank space in the
menu.

378 OpenZinc Application Framework—Programmer's Reference Volume 2

UIW_PULL_DOWN_MENU::UIW_PULL_DOWN_MENU

Syntax
#include <ui_win.hpp>

UIW_PULL_DOWN_MENU(int indentation = 0,
WOF_FLAGS woFlags = WOF_BORDER | WOF_NON_FIELD_REGION |

WOF_SUPPORT_OBJECT,
WOAF_FLAGS woAdvancedFlags = WOAF_NO_FLAGS);
or

UIW_PULL_DOWN_MENU(int indentation, UI_ITEM *item);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
These overloaded constructors create a new UIW_PULL_DOWN_MENU object.

The first constructor creates a UIW_PULL_DOWN_MENU object.

• indentationin is the number of cells over from the left edge of the menu where the
first menu item should be displayed. The indented space is shown as blank space in
the menu. Subsequent menu items will be automatically positioned next to the
previous menu item.

• woFlagsin are flags (common to all window objects) that determine the general
operation of the pull-down menu object. The following flags (declared in
UI_WIN.HPP) control the general presentation of, and interaction with, a UIW_-
PULL_DOWN_MENU class object:

WOF_BORDER—Draws a border around the object. The graphical border's
appearance will depend on the operating system used, and, if in DOS, on the
graphics style being used. In text mode, a border may or may not be drawn,
depending on the text style being used. See "Appendix A—Support

Chapter 18 - UIW_PULL_DOWN_MENU 379

Definitions" in this manual for information on changing DOS graphics mode
styles and text mode styles. This flag is set by default in the constructor.

WOF_NO_FLAGS—Does not associate any special window flags with the
object. This flag should not be used in conjunction with any other WOF flags.

WOF_NON_FIELD_REGION—Causes the object to use the remaining
available space in its parent object. This flag should always be set on a pull-
down menu. It is set by default in the constructor.

WOF_NON_SELECTABLE—Prevents the object from being selected. If this
flag is set, the user will not be able to position on nor select any menu items.
Typically, the object will be drawn in such a manner as to appear non-selectable
(e.g., it may appear lighter than a selectable field).

WOF_SUPPORT_OBJECT—Causes the object to be placed in the parent
object's support list. The support list is reserved for objects that are not
displayed as part of the user region of the window. This flag should be set for
a pull-down menu. This flag is set by default in the constructor.

• woAdvancedFlagsin are flags (common to all window objects) that determine the
advanced operation of the pull-down menu object. The following flags (declared in
UI_WIN.HPP) control the advanced operation of a pull-down menu object:

WOAF_NO_FLAGS—Does not associate any special advanced flags with the
window object. This flag should not be used in conjunction with any other
WOAF flags.

WOAF_NORMAL_HOT_KEYS—Allows the end-user to select an option
using its hotkey by pressing the hotkey by itself, without the <Alt> key
otherwise required for selecting with a hotkey.

The second constructor creates a pull-down menu using a pre-defined item array. These
items are used to create UIW_PULL_DOWN_ITEM objects. NOTE: This constructor
generally should not be used in Macintosh applications as the Macintosh requires pull-
down items to have sub-menus that perform an action.

• indentationin is the number of cells over from the left edge of the menu where the
first menu item should be displayed. The indented space is shown as blank space in
the menu. Subsequent menu items will be automatically positioned next to the
previous menu item.

380 OpenZinc Application Framework—Programmer's Reference Volume 2

• itemin is an array of UI_ITEM structures that are used to construct a set of pull-down
items within the pull-down menu. For more information regarding the use of the
UI_ITEM structure, see "Chapter 18—UI_ITEM" in Programmer's Reference
Volume 1.

Example
#include <ui_win.hpp>

ExampleFunction(UI_WINDOW_MANAGER *windowManager) {
UI ITEM itemsl

{ 1
{ 2
{ 3
{ 4
{ 0

MenuFunction,
MenuFunction,
MenuFunction,
MenuFunction,
NULL,

"Option 1",
"Option 2",
"Option 3",
"Option 4",
NULL,

} ;
// Create a window with pull-down items.
UIW_WINDOW *window = new UIW_WINDOW(0, 0, 40, 10)
*window

+ new UIW_BORDER
+ new UIW_TITLE(" Sample menus ")
+ new UIW_PULL_DOWN_MENU(1, items);

*windowManager + window;

WNF_NO_FLAGS },
WNF_NO_F LAG S }
WNF_NO_F LAGS }
WNF_NO_FLAGS }
WNF_NO_FLAGS }

// The pull-down menu and pull-down items will automatically be destroyed
// when the window is destroyed.

UIW PULL DOWN MENU::~UIW PULL DOWN MENU

Syntax
#include <ui_win.hpp>

virtual ~UIW_PULL_DOWN_MENU(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Chapter 18 - UIW_PULL_DOWN_MENU 381

Remarks
This virtual destructor destroys the class information associated with the UIW_PULL_-
DOWN_MENU object. All objects attached to the pull-down menu will also be
destroyed.

UIW_PULL_DOWN_MENU::Add

Syntax
#include <ui_win.hpp>

UI_WINDOW_OBJECT *Add(UI_WINDOW_OBJECT *object);
or

UIW_PULL_DOWN_MENU &operator + (UI_WINDOW_OBJECT *object);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function adds a new pull-down item to the UIW_PULL_DOWN_MENU object.

• returnValueout is a pointer to object if the addition was successful. Otherwise,
returnValue is NULL.

• objectin is a pointer to the pull-down item to be added to the pull-down menu.

The second overloaded operator adds a pull-down item to the UIW_PULL_DOWN_-
MENU. This operator overload is equivalent to calling the Add() function, except that
it allows the chaining of pull-down item additions to the UIW_PULL_DOWN_MENU.

returnValueout is a pointer to the UIW_PULL_DOWN_MENU object. This pointer
is returned so that the operator may be used in a statement containing other
operations.

382 OpenZinc Application Framework—Programmer's Reference Volume 2

• objectin is a pointer to the pull-down item that is to be added to the menu.

UIW_PULL_DOWN_MENU::ClassName

Syntax
#include <ui_win.hpp>

virtual ZIL_ICHAR *ClassName(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This virtual function returns the object's class name.

• returnValueout is a pointer to _className.

UIW_PULL_DOWN_MENU::Event

Syntax
#include <ui_win.hpp>

virtual EVENT_TYPE Event(const UI_EVENT &event);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Chapter 18 - UIW_PULL_DOWN_MENU 383

Remarks
This function processes run-time messages sent to the pull-down menu object. It is
declared virtual so that any derived pull-down menu class can override its default
operation.

• returnValueout indicates how event was processed. If the event is processed
successfully, the function returns the logical type of event that was interpreted from
event. If the event could not be processed, S_UNKNOWN is returned.

• eventin contains a run-time message for the pull-down menu object. The type of
operation performed depends on the interpretation of the event. The following logical
events are processed by Event():

L_BEGIN_SELECT—Indicates that the end-user began the selection of the
object by pressing the mouse button down while on the object.

S_ADD_OBJECT—Causes a new pull-down item to be added to the pull-down
menu, event.data will point to the new pull-down item to be added.

S_CHANGED—Causes the object to recalculate its position and size. When a
window is moved or sized, the objects on the window will need to recalculate
their positions. This message informs an object that it has changed and that it
should update itself.

S_CREATE—Causes the object to create itself. The object will calculate its
position and size and, if necessary, will register itself with the operating system.
This message is sent by the Window Manager when a window is attached to it
to cause the window and all the objects attached to the window to determine
their positions.

S_DEINITIALIZE—Informs the object that it is about to be removed from the
application and that it should deinitialize any information. The Window Manager
sends this message to a window when the window is subtracted from the
Window Manager. The window, in turn, relays the message to all objects
attached to it.

S_INITIALIZE—Causes the object to initialize any necessary information that
may require a knowledge of its parent or siblings. When a window is added to
the Window Manager, the Window Manager sends this message to cause the
window and all the objects attached to the window to initialize themselves.

S_REDISPLAY—Causes the object to redraw.

384 OpenZinc Application Framework—Programmer's Reference Volume 2

S_REGISTER_OBJECT—Causes the object to register itself with the operating
system.

S_SUBTRACT_OBJECT—Causes a pull-down item to be subtracted from the
pull-down menu, event.data will point to the pull-down item to be subtracted.

All other events are passed by Event() to UIW_WINDOW::Event() for processing.

NOTE: Because most graphical operating systems already process their own events
related to this object, the messages listed above may not be handled in every
environment. Wherever possible, OpenZinc allows the operating system to process its own
messages so that memory use and speed will be as efficient as possible. In these
situations, the system event can be trapped in a derived Event() function.

UIW_PULL_DOWN_MENU::Information

Syntax
#include <ui_win.hpp>

virtual void *Information(ZIL_INFO_REQUEST request, void *data,
ZIL_OBJECTID objectID = ID_DEFAULT);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function allows OpenZinc Application Framework objects and programmer functions to
get or modify specified information about an object.

• returnValueout is a pointer to the return data that was requested. The type of the
return data depends on the request. If the request did not require the return of
information, this value is NULL.

Chapter 17 - UIW_PULL_DOWN_ITEM 385

• requestin is a request to get or set information associated with the object. The
following requests (defined in UI_WIN.HPP) are recognized by the pull-down menu:

I_CHANGED_FLAGS—Informs the object that the programmer has changed
some flags associated with the object and that the object should update itself
accordingly. This request should be sent after changing an object's flags,
particularly if the new flag settings will change the visual appearance of the
object.

I_INITIALIZE_CLASS—Causes the object to initialize any basic information
that does not require a knowledge of its parent or sibling objects. This request
is sent from the constructor of the object.

All other requests are passed by Information() to UIW_WINDOW::Information()
for processing.

• datain/out is used to provide information to the function or to receive the information
requested, depending on the type of request. In general, this must be space allocated
by the programmer.

• objectIDin is a ZIL_OBJECTID that specifies which type of object the request is
intended for. Because the Information() function is virtual, it is possible for an
object to be able to handle a request at more than one level of its inheritance
hierarchy. objectID removes the ambiguity by specifying which level of an object's
hierarchy should process the request. If no value is provided for objectID, the object
will attempt to interpret the request with the objectID of the actual object type.

UIW_PULL_DOWN_MENU::ltemDepthSearch

Syntax
#include <ui_win.hpp>

UIW_POP_UP_ITEM *ItemDepthSearch(long mSelect);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

386 OpenZinc Application Framework—Programmer's Reference Volume 2

Remarks
This function returns a pointer to the pop-up item identified by mSelect. This function
is available for the Macintosh only.

• returnValueout is a pointer to the pop-up item requested. If no pop-up item matched
mSelect, NULL is returned.

• mSelectin is an identifier for the pop-up item requested.

UIW_PULL_DOWN_MENU::Subtract
UIW_PULL_DOWN_MENU::operator -

Syntax
#include <ui_gen.hpp>

UI_WINDOW_OBJECT *Subtract(UI_WINDOW_OBJECT *object);

UIW_PULL_DOWN_MENU &operator - (UI_WINDOW_OBJECT *object);

Portability
This function is available on the following environments:

Remarks
These functions remove pull-down item from the UIW_PULL_DOWN_MENU.

The first function removes a pull-down item from the UIW_PULL_DOWN_MENU but
does not call the destructor associated with the object. The programmer is responsible for
deletion of each object explicitly subtracted from a list.

• returnValueout is a pointer to the next pull-down item in the menu. This value is
NULL if there are no more pull-down items after the subtracted pull-down item.

• elementin is a pointer to the pull-down item to be subtracted from the menu.

or

• DOS Text
• Macintosh

• DOS Graphics • Windows
• OSF/Motif • Curses

• OS/2
• NEXTSTEP

Chapter 18 - UIW_PULL_DOWN_MENU 387

The second overloaded operator removes a pull-down item from the UIW_PULL_-
DOWN_MENU but does not call the destructor associated with the object. This operator
overload is equivalent to calling the Subtract^) function, except that it allows the
chaining of pull-down item removals from the UIW_PULL_DOWN_MENU.

• returnValueout is a pointer to the UIW_PULL_DOWN_MENU object. This pointer
is returned so that the operator may be used in a statement containing other
operations.

• objectin is a pointer to the pull-down item that is to be subtracted from the menu.

Storage Members

This section describes those class members that are used for storage purposes.

UIW_PULL_DOWN_MENU::UIW_PULL_DOWN_MENU

Syntax
#include <ui_win.hpp>

UIW_PULL_DOWN_MENU(const ZIL_ICHAR *name,
ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object,
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced constructor creates a new UIW_PULL_DOWN_MENU by loading the
object from a data file. Typically, the programmer does not need to use this constructor.

388 OpenZinc Application Framework—Programmer's Reference Volume 2

If a pull-down menu object is stored in a data file it is usually stored as part of a
UIW_WINDOW and will be loaded when the window is loaded.

• namein is the name of the object to be loaded.

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT::objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT::userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

UIW_PULL_DOWN_MENU::Load

Syntax
#include <ui_win.hpp>

virtual void Load(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

Chapter 18 - UIW_PULL_DOWN_MENU 389

Portability
This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics • Windows
• OSF/Motif • Curses

• OS/2
• NEXTSTEP

Remarks
This advanced function is used to load a UIW_PULL_DOWN_MENU from a persistent
object data file. It is called by the persistent constructor and is typically not used by the
programmer.

• namein is the name of the object to be loaded.

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT:.objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT::userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

390 OpenZinc Application Framework—Programmer's Reference Volume 2

UIW_PULL_DOWN_MENU::New

Syntax
#include <ui_win.hpp>

static UI_WINDOW_OBJECT *New(const ZIL_ICHAR *name,
ZIL_STORAGE_READ_ONLY *file =

ZIL_NULLP(ZIL_STORAGE_READ_ONLY),
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY),
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced function is used to load a persistent object from a data file. This function
is a static class member so that its address can be placed in a table used by the library to
load persistent objects from a data file.

NOTE: The application must first create a display if objects are to be loaded from a data
file.

• namein is the name of the object to be loaded.

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY'' of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECTJREAD_ONLY" of Programmer's Reference Volume
1.

Chapter 18 - UIW_PULL_DOWN_MENU 391

objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT::objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT::userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

UIW_PULL_DOWN_MENU::NewFunction

Syntax
#include <ui_win.hpp>

virtual ZIL_NEW_FUNCTION NewFunction(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks

This virtual function returns a pointer to the object's New() function.

• returnValueout is a pointer to the object's New() function.

392 OpenZinc Application Framework—Programmer's Reference Volume 2

UIW_PULL_DOWN_MENU::Store

Syntax
#include <ui_win.hpp>

virtual void Store(const ZIL_ICHAR *name, ZIL_STORAGE *file,
ZIL_STORAGE_OBJECT *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced function is used to write an object to a data file.

• namein is the name of the object to be stored.

• filein is a pointer to the ZIL_STORAGE where the persistent object will be stored.
For more information on persistent object files, see "Chapter 66—ZIL_STORAGE"
of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT where the persistent object
information will be stored. This must be allocated by the programmer. For more
information on loading persistent objects, see "Chapter 68—ZIL_STORAGE_-
OBJECT" of Programmer's Reference Volume 1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT::objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the

Chapter 18 - UIW PULL DOWN MENU 393

description of UI_WINDOW_OBJECT:. userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

394 OpenZinc Application Framework—Programmer's Reference Volume 2

CHAPTER 19 - UIW_REAL

The UIW_REAL class is used to display floating-point information and to collect
information, in floating-point format, from the end-user. The UIW_REAL class will
display double values using decimal notation. If larger values are required or if any
formatting is necessary (e.g., currency symbols) the UIW_BIGNUM object should be
used. The figure below shows the graphical implementation of a window with
UIW_REAL class objects:

The UIW_REAL class is declared in UI_WIN.HPP. Its public and protected members
are:

class ZIL_EXPORT_CLASS UIW_REAL : public UIW_STRING {
public:

static ZIL_ICHAR _className[];
static int defaultlnitialized;
NMF_FLAGS nmFlags;

UIW_REAL(int left, int top, int width, double *value,
const ZIL_ICHAR *range = ZIL_NULLP(ZIL_ICHAR),
NMF_FLAGS nmFlags = NMF_NO_FLAGS,
WOF_FLAGS woFlags = WOF_BORDER | WOF_AUTO_CLEAR,
ZIL_USER_FUNCTION userFunction = ZIL_NULLF(ZIL_USER_FUNCTION));

virtual ~UIW_REAL(void);
virtual ZIL_ICHAR *ClassName(void);
double DataGet(void);
void DataSet(double *value);
virtual EVENT_TYPE Event(const UI_EVENT &event);
virtual void *Information(ZIL_INFO_REQUEST request, void *data,

ZIL_OBJECTID objectID = ID_DEFAULT);
virtual int Validate(int processError = TRUE);

#if defined(ZIL_LOAD)
virtual ZIL_NEW_FUNCTION NewFunction(void);
Static UI_WINDOW_OBJECT *New(const ZIL_ICHAR *name,

ZIL_STORAGE_READ_ONLY *file = ZIL_NULLP(ZIL_STORAGE_READ_ONLY),
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY) ,
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM) ,

Chapter 19 - UIW_REAL 395

UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));
UIW_REAL(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,

ZIL_STORAGE_OBJECT_READ_ONLY *object,
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *USerTable = ZIL_NULLP(UI_ITEM));

virtual void Load(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

#endif
#if defined(ZIL_STORE)

virtual void Store(const ZIL_ICHAR *name, ZIL_STORAGE *file,
ZIL_STORAGE_OBJECT *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

#endif

void SetLanguage(const ZIL_ICHAR *languageName);

protected:
double *number;
ZIL_ICHAR *range;
const ZIL_LANGUAGE *myLanguage;
static void Format(ZIL_ICHAR *text, double number, NMF_FLAGS flags);

} ;

General Members

This section describes those members that are used for general purposes.

• _className contains a string identifying the class. The string is always the same
name as the class, is always in English, and never changes. For example, for the
UIW_REAL class, _className is "UIW_REAL."

• defaultlnitialized indicates if the default language strings for this object have been set
up. The default strings are located in the file LANG_DEF.CPP. If defaultlnitialized
is TRUE, the strings have been set up. Otherwise they have not been.

• nmFlags are flags that define the operation of the UIW_REAL class. A full
description of the number flags is given in the UIW_REAL constructor.

• number is used to store the double value for UIW_REAL. If the WOF_NO_-
ALLOCATE_DATA flag is set, number will simply point to the value that was
passed in the constructor.

• range is a string that specifies the range(s) of acceptable values, range is a copy of
the range that is passed to the constructor.

• myLanguage is the ZIL_LANGUAGE object that contains the string translations for
this object.

396 OpenZinc Application Framework—Programmer's Reference Volume 2

UIW_REAL::UIW_REAL

Syntax
#include <ui_win.hpp>

UIW_REAL(int left, int top, int width, double *value,
const ZIL_ICHAR *range = ZIL_NULLP(ZIL_ICHAR),
NMF_FLAGS nmFlags = NMF_NO_FLAGS,
WOF_FLAGS woFlags = WOF_BORDER | WOF_AUTO_CLEAR,
ZIL_USER_FUNCTION userFunction = ZIL_NULLF(ZIL_USER_FUNCTION));

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This constructor creates a new UIW_REAL class object.

• left i n and topin is the starting position of the real field within its parent window.
Typically, these values are in cell coordinates. If the WOF_MINICELL flag is set,
however, these values will be interpreted as minicell values.

• widthin is the width of the real field. Typically, this value is in cell coordinates. If
the WOF_MINICELL flag is set, however, this value will be interpreted as a minicell
value. The height of the real field is determined automatically by the UIW_REAL
object.

• valuein is a pointer to the default numeric value. This value is copied into a buffer
allocated by the UIW_REAL object unless the WOF_NO_ALLOCATE_DATA flag
is set, in which case value is used.

• rangein is a string that specifies the valid numeric ranges. A range consists of a
minimum value, a maximum value, and the values in between. For example, if a
range of "10.00.. 100.00" is specified, the UIW_REAL class object will only accept
those numeric values that fall between 10.00 and 100.00, inclusive. Open-ended
ranges can be specified by leaving the minimum or maximum value off. For

Chapter 19 - UIW_REAL 397

example, a range of "50.00.." will allow all values that are 50.00 or greater.
Multiple, disjoint ranges can be specified by separating the individual ranges with a
slash (i.e. '/'). For example, "10.00..19.90/100.00.." will accept all values from
10.00 to 19.90 and values of 100.00 or greater. If range is NULL, any number
within the absolute range is accepted. This string is copied by the UIW_REAL class
object to the range member variable.

• nmFlagsin describes how the real object should display and interpret the numeric
information. The following flags (declared in UI_GEN.HPP) control the general
presentation of a UIW_REAL class object:

NMF_DIGITS{number)—Sets the number of decimal places to number decimal
places.

NMF_NO_FLAGS—Does not associate any special flags with the number
object. This flag should not be used in conjunction with any other NMF flag.
This is the default argument in the constructor.

NMF_SCIENTIFIC—Causes the number to be formatted with scientific
notation.

• woFlagsin are flags (common to all window objects) that determine the general
operation of the real object. The following flags (declared in UI_WIN.HPP) affect
the operation of a UIW_REAL class object:

WOF_AUTO_CLEAR—Automatically marks the entire buffer if the end-user
tabs to the field from another object. If the user then enters data (without first
having pressed any movement or editing keys) the entire field will be replaced.
This flag is set by default in the constructor.

WOF_BORDER—Draws a border around the object. The graphical border's
appearance will depend on the operating system used, and, if in DOS, on the
graphics style being used. In text mode, a border may or may not be drawn,
depending on the text style being used. See "Appendix A—Support
Definitions" in this manual for information on changing DOS graphics mode
styles and text mode styles. This flag is set by default in the constructor.

WOF_INVALID—Sets the initial status of the field to be "invalid." Invalid
entries fit in the absolute range determined by the object type but do not fulfill
all the requirements specified by the program. For example, a real may initially
be set to 20.00, but the final number, edited by the end-user, must be in the
range "1.00.. 10.00." The initial number in this example fits the absolute range

398 OpenZinc Application Framework—Programmer's Reference Volume 2

requirements of a UIW_REAL class object but does not fit into the specified
range. By denoting the field as invalid, the user is forced to enter an acceptable
value.

WOF_JUSTIFY_CENTER—Center-justifies the data within the displayed field.

WOF_JUSTIFY_RIGHT—Right-justifies the data within the displayed field.

WOF_MINICELL—Causes the position and size values that were passed into
the constructor to be interpreted as minicells. A minicell is a fraction the size
of a normal cell. Greater precision in object placement is achieved by specifying
an object's position in minicell coordinates. A minicell is l/10th the size of a
normal cell by default.

WOF_NO_ALLOCATE_DATA—Prevents the object from allocating a buffer
to store the data. If this flag is set, the programmer is responsible for allocating
the memory for the data. The programmer is also responsible for deallocating
that memory when it is no longer needed.

WOF_NO_FLAGS—Does not associate any special window flags with the
object. Setting this flag left-justifies the data. This flag should not be used in
conjunction with any other WOF flags.

WOF_NON_FIELD_REGION—Causes the object to ignore its position and
size parameters and use the remaining available space in its parent object.

WOF_NON_SELECTABLE—Prevents the object from being selected. If this
flag is set, the user will not be able to position on nor edit the real information.
Typically, the field will be drawn in such a manner as to appear non-selectable
(e.g., it may appear lighter than a selectable field).

WOF_SUPPORT_OBJECT—Causes the object to be placed in the parent
object's support list. The support list is reserved for objects that are not
displayed as part of the user region of the window. Care should be used when
setting this flag on an object that does not use it by default as undesirable effects
may occur. This flag generally should not be used by the programmer.

WOF_UNANSWERED—Sets the initial status of the field to be "unanswered."
An unanswered field is displayed as an empty field.

WOF_VIEW_ONLY—Prevents the object from being edited. However, the
object may become current and the user may scroll through the data, mark it, and
copy it.

Chapter 19 - UIW_REAL 399

• userFunctionin is a programmer defined function that will be called by the library at
certain points in the user's interaction with an object. The user function will be
called by the library when:

1—the user moves onto the field,

2—the <ENTER> key is pressed while the field is current or, if the field is in
a list, the mouse is clicked on it, or

3—the user moves to a different field in the window or to a different window.

Because the user function is called at these times, the programmer can do data
validation or any other type of necessary operation. The definition of the
userFunction is as follows:

EVENT_TYPE FunctionName(UI_WINDOW_OBJECT *object,
UI_EVENT &event, EVENT_TYPE ccode);

returnValueout indicates if an error has occurred. returnValue should be 0 if the
no error occurred. Otherwise, the programmer should call the error system with
an appropriate error message and return -1.

objectin is a pointer to the object for which the user function is being called.
This argument must be typecast by the programmer if class-specific members
need to be accessed.

eventin is the run-time message passed to the object.

ccodein is the logical or system code that caused the user function to be called.
This code (declared in UI_WIN.HPP) will be one of the following constant
values:

L_SELECT—The <ENTER> key was pressed while the field was current,
or, if the field is in a list, the mouse was clicked on the field.

S_CURRENT—The object just received focus because the user moved to
it from another field or window. This code is sent before any editing
operations are permitted.

S_NON_CURRENT—The object just lost focus because the user moved to
another field or window.

400 OpenZinc Application Framework—Programmer's Reference Volume 2

NOTE: If a user function is associated with the object, Validate() must be called
explicitly from within userFunction if range checking is desired.

Example
#include <ui_win.hpp>

ExampleFunction(UI_WINDOW_MANAGER *windowManager)
{

// Create a window and add it to the window manager,
double value = 0.0;
UIW_WINDOW *window = new UIW_WINDOW(0, 0, 40, 10);
*window

+ new UIWJBORDER
+ new UIW_TITLE(" Sample numbers ")
+ new UIW_PROMPT(2, 1, "Standard:")
+ new UIW_REAL(12, 1, 20, &value, "0.. 10000")
+ new UIW_PROMPT(2, 2, "Currency:");

*windowManager + window;

}

// The real number fields are automatically destroyed when the window
// is destroyed.

UIW REAL::~UIW REAL

Syntax

#include <ui_win.hpp>

virtual ~UIW_REAL(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This virtual destructor destroys the class information associated with the UIW_REAL
object.

Chapter 19 - UIW_REAL 401

UIW_REAL::ClassName

Syntax
#include <ui_win.hpp>

virtual ZIL_ICHAR *ClassName(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks

This virtual function returns the object's class name.

• returnValueout is a pointer to _className.

UIW_REAL::DataGet

Syntax

#include <ui_win.hpp>

double DataGet(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks

This function gets the current numeric information associated with the UIW_REAL class

402 OpenZinc Application Framework—Programmer's Reference Volume 2

object.

• returnValueout is the double value.

Example
#include <ui_win.hpp>

ExampleFunction(UIW_REAL *realObject) {
double value = realObject->DataGet();

}

UIW_REAL::DataSet

Syntax

#include <ui_win.hpp>

void DataSet(double "value);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function assigns a new value to the UIW_REAL object and redisplays the field. If
no value is passed in (i.e., value is NULL), the field will be redrawn.

• valuein is a pointer to the new value. If the WOF_NO_ALLOCATE_DATA flag is
set, this argument must be a double, allocated by the programmer, that is not
destroyed until the UIW_REAL class object is destroyed. Otherwise, the information
associated with this argument is copied by the UIW_REAL class object. If this
argument is NULL, no numeric information is changed, but the number field is
redisplayed.

Chapter 19 - UIW_REAL 403

Example
#include <ui_win.hpp>

ExampleFunction(UIW_REAL *number) {

double amount = 100.0;
number->DataSet(&amount);

}

UIW_REAL::Event

Syntax
#include <ui_win.hpp>

virtual EVENT_TYPE Event(const UI_EVENT &event);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function processes run-time messages sent to the real object. It is declared virtual
so that any derived real class can override its default operation.

• returnValueout indicates how event was processed. If the event is processed
successfully, the function returns the logical type of event that was interpreted from
event. If the event could not be processed, S_UNKNOWN is returned.

• eventin contains a run-time message for the real object. The type of operation
performed depends on the interpretation of the event. The following logical events
are processed by Event():

L_SELECT—Indicates that the object has been selected. The selection may be
the result of a mouse click or a keyboard action.

404 OpenZinc Application Framework—Programmer's Reference Volume 2

S_CREATE—Causes the object to create itself. The object will calculate its
position and size and, if necessary, will register itself with the operating system.
This message is sent by the Window Manager when a window is attached to it
to cause the window and all the objects attached to the window to determine
their positions.

S_NON_CURRENT—Indicates that the object has just become non-current.
This message is received when the user moves to another field or window.

All other events are passed by Event() to UIW_STRING::Event() for processing.

UIW_REAL::Format

Syntax
#include <ui_win.hpp>

static void Format(ZIL_ICHAR *text, double number, NMF_FLAGS flags);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function places the string representation of number in text. The text is formatted
according to the flags passed in flags.

• textin is a pointer to a buffer where the string representation of the number is placed.
This string must be long enough to contain the entire string including the NULL
terminator.

• numberin is the value whose string representation will be converted.

• flagsin specifies the format for the text. The following flags (defined in UI_-
WIN.HPP) are valid:

Chapter 19 - UIW_REAL 405

NMF_DIGITS(number)—Sets the number of decimal places to number decimal
places.

NMF_NO_FLAGS—Does not associate any special flags with the number
object. This flag should not be used in conjunction with any other NMF flag.

NMF_SCIENTIFIC—Causes the number to be formatted with scientific
notation.

UIW REAL:information

Syntax
#include <ui_win.hpp>

virtual void *Information(ZIL_INFO_REQUEST request, void *data,
ZIL_OBJECTID objectID = ID_DEFAULT);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function allows OpenZinc objects and programmer functions to get or modify specified
information about an object.

• returnValueout is a pointer to the return data that was requested. The type of the
return data depends on the request. If the request did not require the return of
information, this value is NULL.

• requestin is a request to get or set information associated with the object. The
following requests (defined in UI_WIN.HPP) are recognized by the real:

I_CHANGED_FLAGS—Informs the object that the programmer has changed
some flags associated with the object and that the object should update itself
accordingly. This request should be sent after changing an object's flags,

406 OpenZinc Application Framework—Programmer's Reference Volume 2

particularly if the new flag settings will change the visual appearance of the
object.

I_DECREMENT_VALUE—Decrements the real's value. If this message is
sent, data must be a pointer to an ZIL_INT32 (only integral values are
supported for this request). The real object's value will be decremented by the
value of data. The real will not be modified if the new value is not within the
specified range.

I_GET_VALUE—Returns the value associated with the real. If this message
is sent, data must be a pointer to a variable of type double where the real's
value will be copied.

I_INCREMENT_VALUE—Increments the real's value. If this message is sent,
data must be a pointer to an ZIL_INT32 (only integral values are supported for
this request). The real object's value will be incremented by the value of data.
The real will not be modified if the new value is not within the specified range.

I_INITIALIZE_CLASS—Causes the object to initialize any basic information
that does not require a knowledge of its parent or sibling objects. This request
is sent from the constructor of the object.

I_SET_VALUE—Sets the value associated with the real. If this message is
sent, data must be a pointer to a variable of type double that contains the real's
new value.

All other requests are passed by Information() to UIW_STRING::Information()
for processing.

• datain/out is used to provide information to the function or to receive the information
requested, depending on the type of request. In general, this must be space allocated
by the programmer.

• objectIDin is a ZIL_OBJECTID that specifies which type of object the request is
intended for. Because the Information() function is virtual, it is possible for an
object to be able to handle a request at more than one level of its inheritance
hierarchy. objectID removes the ambiguity by specifying which level of an object's
hierarchy should process the request. If no value is provided for objectID, the object
will attempt to interpret the request with the objectID of the actual object type.

Chapter 19 - UIW_REAL 407

UIW_REAL::SetLanguage

Syntax
#include <ui_win.hpp>

void SetLanguage(const ZIL_ICHAR *languageName);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function sets the language to be used by the object. The string translations for the
object will be loaded and the object's myLanguage member will be updated to point to
the new ZIL_LANGUAGE object. By default, the object uses the language identified in
the LANG_DEF.CPP file, which compiles into the library. (If a different default
language is desired, simply copy a LANG_<ISO>.CPP file from the OpenZinc\SOURCE\-
INTL directory to the \OpenZinc\SOURCE directory, and rename it to LANG_DEF.CPP
before compiling the library.) The language translations are loaded from the I18N.DAT
file, so it must be shipped with your application.

• languageNamein is the two-letter ISO language code identifying which language the
object should use.

UIW_REAL::Validate

Syntax
#include <ui_win.hpp>

virtual int Validate(int processError = TRUE);

408 OpenZinc Application Framework—Programmer's Reference Volume 2

Portability
This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics • Windows
• OSF/Motif • Curses

• OS/2
• NEXTSTEP

Remarks
This function is used to validate objects. When an object receives the S_CURRENT or
S_NON_CURRENT messages, it calls Validate() to check if the value entered is valid.
However, if a user function is associated with the object, Validate() must be called
explicitly from the user function if range checking is desired. The value is invalid if it
is not within the absolute range of the object or if it is not within a range specified by the
range member variable.

• returnValueout indicates the result of the validation. The possible values for
returnValue are:

NMI_GREATER_THAN_RANGE—The number entered was greater than the
maximum value of a negatively open-ended range.

NMI_INVALID—The number was entered in an incorrect format.

NMI_LESS_THAN_RANGE—The number entered was less than the minimum
value of a positively open-ended range.

NMI_OK—The number was entered in a correct format and within the valid
ranges.

NMI_OUT_OF_RANGE—The number was not within the valid range for
numbers or was not within the specified range.

• processErrorin determines whether Validate() should call UI_ERROR_SYSTEM::-
ReportError() if an error occurs. If processError is TRUE, ReportError() is
called. Otherwise, the error system is not called.

This section describes those class members that are used for storage purposes.

Storage Members

Chapter 19 - UIW_REAL 409

UIW_REAL::UIW_REAL

Syntax
#include <ui_win.hpp>

UIW_REAL(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object,
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced constructor creates a new UIW_REAL by loading the object from a data
file. Typically, the programmer does not need to use this constructor. If a real is stored
in a data file it is usually stored as part of a UIW_WINDOW and will be loaded when
the window is loaded.

• namein is the name of the object to be loaded.

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT:.objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,

410 OpenZinc Application Framework—Programmer's Reference Volume 2

the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT::userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

UIW_REAL::Load

Syntax
#include <ui_win.hpp>

virtual void Load(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced function is used to load a UIWJREAL from a persistent object data file.
It is called by the persistent constructor and is typically not used by the programmer.

• namein is the name of the object to be loaded.

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the

Chapter 19 - UIW_REAL 411

programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT::objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT:. userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

UIW_REAL::New

Syntax
#include <ui_win.hpp>

static UI_WINDOW_OBJECT *New(const ZIL_ICHAR *name,
ZIL_STORAGE_READ_ONLY *file =

ZIL_NULLP(ZIL_STORAGE_READ_ONLY),
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY),
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows
• Macintosh • OSF/Motif • Curses

• OS/2
• NEXTSTEP

412 OpenZinc Application Framework—Programmer's Reference Volume 2

Remarks
This advanced function is used to load a persistent object from a data file. This function
is a static class member so that its address can be placed in a table used by the library to
load persistent objects from a data file.

NOTE: The application must first create a display if objects are to be loaded from a data
file.

• namein is the name of the object to be loaded.

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT::objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT:. userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

UIW REAL::NewFunction

Syntax
#include <ui_win.hpp>

virtual ZIL_NEW_FUNCTION NewFunction(void);

Chapter 19 - UIW_REAL 413

Portability
This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics • Windows
• OSF/Motif • Curses

• OS/2
• NEXTSTEP

Remarks
This virtual function returns a pointer to the object's New() function.

returnValueout is a pointer to the object's New() function.

UIW REAL::Store

Syntax
#include <ui_win.hpp>

virtual void Store(const ZIL_ICHAR *name, ZIL_STORAGE *file,
ZIL_STORAGE_OBJECT *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced function is used to write an object to a data file.

• namein is the name of the object to be stored.

• filein is a pointer to the ZIL_STORAGE where the persistent object will be stored.
For more information on persistent object files, see "Chapter 66—ZIL_STORAGE"
of Programmer's Reference Volume 1.

414 OpenZinc Application Framework—Programmer's Reference Volume 2

• objectin is a pointer to the ZIL_STORAGE_OBJECT where the persistent object
information will be stored. This must be allocated by the programmer. For more
information on loading persistent objects, see "Chapter 68—ZIL_STORAGE_-
OBJECT" of Programmer's Reference Volume 1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UIW_WINDOW_OBJECT::objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT:. userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

Chapter 19 - UIW_REAL 415

OpenZinc Application Framework—Programmer's Reference Volume 2 416

CHAPTER 20 - UIW_SCROLL_BAR

The UIW_SCROLL_BAR class is used to create a scroll bar or a slider. There are two
differences between a scroll bar and a slider. The first difference is their appearance. In
most environments they look a little different. The scroll bar track is usually as wide as
the scroll bar whereas the slider track is typically somewhat thinner.

The second difference is how a vertical scroll bar scrolls as opposed to a vertical slider.
As the scroll position on a vertical scroll bar increases, its thumb button moves from the
top of the scroll bar toward the bottom. On a vertical slider, however, the thumb button
moves from the bottom of the slider toward the top as the position increases.

A scroll bar is typically used to scroll another object, such as a list.

A slider is typically used to visually indicate the current value relative to the range of
possible values and to allow the setting of the value.

The figure below shows a graphical implementation of a list with a UIW_SCROLL_BAR
class object:

The UIW_SCROLL_BAR class is declared in UI_WIN.HPP. Its public and protected
members are:

class ZIL_EXPORT_CLASS UIW_SCROLL_BAR : public UIW_WINDOW {
public:

static ZIL_ICHAR _className[];
SBF_FLAGS sbFlags;

Chapter 20 - UIW_SCROLL_BAR 417

UIW_SCROLL_BAR(int left, int top, int width, int height,
SBF_FLAGS sbFlags = SBF_VERTICAL,
WOF_FLAGS woFlags = WOF_BORDER | WOF_SUPPORT_OBJECT |

WOF_NON_FIELD_REGION);
UIW_SCROLL_BAR(int left, int top, int width, int height,

UI_SCROLL_INFORMATION *scroll, SBF_FLAGS sbFlags = SBF_VERTICAL,
WOF_FLAGS woFlags = WOF_BORDER,
WOAF_FLAGS woAdvancedFlags = WOAF_NON_CURRENT,
ZIL_USER_FUNCTION userFunction = ZIL_NULLF(ZIL_USER_FUNCTION));

virtual ~UIW_SCROLL_BAR(void);
virtual ZIL_ICHAR *ClassName(void);
virtual EVENT_TYPE Drawltem(const UI_EVENT &event, EVENT_TYPE ccode);
virtual EVENT_TYPE Event(const UI_EVENT &event);
virtual void *Information(ZIL_INFO_REQUEST request, void *data,

ZIL_OBJECTID objectID = ID_DEFAULT);

#if defined(ZIL_LOAD)
virtual ZIL_NEW_FUNCTION NewFunction(void);
static UI_WINDOW_OBJECT *New(const ZIL_ICHAR *name,

ZIL_STORAGE_READ_ONLY *file = ZIL_NULLP(ZIL_STORAGE_READ_ONLY),
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY),
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

UIW_SCROLL_BAR(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object,
UI_ITEM *ObjectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

virtual void Load(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

#endif
#if defined (ZIL_STORE)

virtual void Store(const ZIL_ICHAR *name, ZIL_STORAGE *file,
ZIL_STORAGE_OBJECT *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

#endif

protected:
UI_SCROLL_INFORMATION scroll;

} ;

General Members

This section describes those members that are used for general purposes.

• _className contains a string identifying the class. The string is always the same
name as the class, is always in English, and never changes. For example, for the
UIW_SCROLL_BAR class, _className is "UIW_SCROLL_BAR."

• sbFlags are flags that define the operation of the UIW_SCROLL_BAR class. A full
description of the scroll bar flags is given in the UIW_SCROLL_BAR constructor.

• scroll contains the current scroll bar position information.

418 OpenZinc Application Framework—Programmer's Reference Volume 2

UIW_SCROLL_BAR::UIW_SCROLL_BAR

Syntax
#include <ui_win.hpp>

UIW_SCROLL_BAR(int left, int top, int width, int height,
SBF_FLAGS sbFlags = SBF_VERTICAL,
WOF_FLAGS woFlags = WOF_B ORDER | WOF_SUPPORT_OBJECT |

WOF_NON_FIELD_REGION);
or

UIW_SCROLL_BAR(int left, int top, int width, int height,
UI_SCROLL_INFORMATION *scroll, SBF_FLAGS sbFlags = SBF_VERTICAL,
WOF_FLAGS woFlags = WOF_B ORDER,
WOAF_FLAGS woAdvancedFlags = WOAF_NON_CURRENT,
ZIL_USER_FUNCTION userFunction = ZIL_NULLF(ZIL_USER_FUNCTION));

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
These overloaded constructors create a new UIW_SCROLL_BAR class object.

The first constructor creates a scroll bar. A scroll bar is added to the object it is to
control. The object must know how to respond to scrolling messages (e.g., S_VSCROLL
and S_HSCROLL).

• left i n and topin is the starting position of the scroll bar within its parent window.
Typically, these values are in cell coordinates. If the WOF_MINICELL flag is set,
however, these values will be interpreted as minicell values.

• widthin is the width of the scroll bar. Typically, this value is in cell coordinates. If
the WOF_MINICELL flag is set, however, this value will be interpreted as a minicell
value.

Chapter 20 - UIW_SCROLL_BAR 419

• heightin is the height of the scroll bar. Typically, this value is in cell coordinates.
If the WOF_MINICELL flag is set, however, this value will be interpreted as a
minicell value.

• sbFlagsin are flags that define the operation of the UIW_SCROLL_BAR class. The
following flags (declared in UI_WIN.HPP) control the general presentation of a
UIW_SCROLL_BAR class object:

SBF_CORNER—Creates a corner scroll bar object. A corner scroll bar fills the
area between the horizontal and vertical scroll bars. This flag has no effect
under Windows or OS/2, since these environments automatically draw the corner
area.

SBF_HORIZONTAL—Creates a horizontal scroll bar object.

SBF_NO_FLAGS—Does not associate any special flags with the UIW_-
SCROLL_BAR class object. In general, this flag should not be used since the
SBF_FLAGS determine the type of scroll bar to create.

SBF_VERTICAL—Creates a vertical scroll bar object.

• woFlagsin are flags (common to all window objects) that determine the general
operation of the scroll bar object. The following flags (declared in UI_WIN.HPP)
control the general presentation of, and interaction with, a UIW_SCROLL_BAR class
object:

WOF_BORDER—Draws a border around the object. The graphical border's
appearance will depend on the operating system used, and, if in DOS, on the
graphics style being used. In text mode, a border may or may not be drawn,
depending on the text style being used. See "Appendix A—Support
Definitions" in this manual for information on changing DOS graphics mode
styles and text mode styles. This flag is set by default in the constructor.

WOF_MINICELL—Causes the position and size values that were passed into
the constructor to be interpreted as minicells. A minicell is a fraction the size
of a normal cell. Greater precision in object placement is achieved by specifying
an object's position in minicell coordinates. A minicell is 1/1 Oth the size of a
normal cell by default.

WOF_NO_FLAGS—Does not associate any special window flags with the
object. This flag should not be used in conjunction with any other WOF flags.

420 OpenZinc Application Framework—Programmer's Reference Volume 2

WOF_NON_FIELD_REGION—Causes the object to ignore its position and
size parameters and use the remaining available space in its parent object. A
vertical scroll bar will be placed along the right edge of its parent, while a
horizontal scroll bar will be placed along the bottom edge of its parent. This
flag is set by default in the constructor.

WOF_SUPPORT_OBJECT—Causes the object to be placed in the parent
object's support list. The support list is reserved for objects that are not
displayed as part of the user region of the window. If the WOF_SUPPORT_-
OBJECT flag is set, the scroll bar will send scroll events to the object it controls.
If this flag is not set, it will attempt to call its user function. For a scroll bar,
this flag must be set. This flag is set by default in the constructor.

NOTE: Scroll bars are added directly to the object which they are to control.

The second constructor creates a slider control.

• left i n and topin is the starting position of the slider within its parent window.
Typically, these values are in cell coordinates. If the WOF_MINICELL flag is set,
however, these values will be interpreted as minicell values.

• widthin is the width of the slider. Typically, this value is in cell coordinates. If the
WOF_MINICELL flag is set, however, this value will be interpreted as a minicell
value.

• heightin is the height of the slider. Typically, this value is in cell coordinates. If the
WOF_MINICELL flag is set, however, this value will be interpreted as a minicell
value.

• scrollin is the scroll information that defines the range and update values for the
slider. For more information about the use of scroll, see "Chapter 39—UI_-
SCROLLJNFORMATION" of Programmer's Reference Volume 1.

scroll.current specifies the initial value of the slider.

scroll.minimum specifies the minimum value of the slider range.

scroll.maximum specifies the maximum value of the slider range.

scroll.showing specifies the increment or decrement value for page up or page
down movement.

Chapter 20 - UIW_SCROLL_BAR 421

scroll delta specifies the increment or decrement value for single interval up or
down movement.

• sbFlagsin are flags that define the operation of the UIW_SCROLL_BAR class. The
following flags (declared in UI_WIN.HPP) control the general presentation of a
UIW_SCROLL_BAR class object:

SBF_HORIZONTAL—Creates a horizontal slider object.

SBF_NO_FLAGS—Does not associate any special flags with the UIW_-
SCROLL_BAR class object. In general, this flag should not be used since the
SBF_FLAGS determine the type of slider to create.

SBF_SLIDER—Causes the object to appear as a slider. In most environments
the slider looks different than a scroll bar. When set with the SBF_VERTICAL
flag, the SBF_SLIDER flag also allows the vertical slider to update properly.
A vertical slider's value increases as the thumb button moves toward the top of
the shaft, whereas a scroll bar's value decreases as the thumb button moves up.

SBF_VERTICAL—Creates a vertical slider object.

• woFlagsin are flags (common to all window objects) that determine the general
operation of the slider object. The following flags (declared in UI_WIN.HPP)
control the general presentation of, and interaction with, a UIW_SCROLL_BAR class
object:

WOF_BORDER—Draws a border around the object. The graphical border's
appearance will depend on the operating system used, and, if in DOS, on the
graphics style being used. In text mode, a border may or may not be drawn,
depending on the text style being used. See "Appendix A—Support
Definitions" in this manual for information on changing DOS graphics mode
styles and text mode styles. This flag is set by default in the constructor.

WOF_MINICELL—Causes the position and size values that were passed into
the constructor to be interpreted as minicells. A minicell is a fraction the size
of a normal cell. Greater precision in object placement is achieved by specifying
an object's position in minicell coordinates. A minicell is 1/1 Oth the size of a
normal cell by default.

WOF_NO_FLAGS—Does not associate any special window flags with the
object. This flag should not be used in conjunction with any other WOF flags.

422 OpenZinc Application Framework—Programmer's Reference Volume 2

WOF_NON_FIELD_REGION—Causes the object to ignore its position and
size parameters and use the remaining available space in its parent object. A
vertical scroll bar will be placed along the right edge of its parent while a
horizontal scroll bar will be placed along the bottom edge of its parent.

WOF_SUPPORT_OBJECT—Causes the object to be placed in the parent
object's support list. The support list is reserved for objects that are not
displayed as part of the user region of the window. If the WOF_-
SUPPORT_OBJECT flag is set, the slider will send scroll events to the object
it is attached to. If this flag is not set, it will attempt to call its user function.
For a slider, this flag must not be set.

• woAdvancedFlags are flags (common to all window objects) that determine the
advanced operation of the slider object. The following flags (declared in UI_-
WIN.HPP) control the advanced operation of a slider object:

WOAF_NO_FLAGS—Does not associate any special advanced flags with the
window object. This flag should not be used in conjunction with any other
WOAF flags.

WOAF_NON_CURRENT—Prevents the object from becoming current. If the
object is an action object (i.e., it performs an action when selected with the
mouse—examples would include a button or a slider) it can still be operated, but
will not become current.

• userFunctionin is a programmer defined function that will be called by the library at
certain points in the user's interaction with an object. The user function will be
called by the library when:

1—the user moves onto the object,

2—the mouse is clicked on the object,

3—a key was pressed that updates the slider value,

4—the user moves to a different field in the window or to a different window.

Because the user function is called at these times, the programmer can do data
validation or any other type of necessary operation. The definition of the
userFunction is as follows:

Chapter 20 - UIW_SCROLL_BAR 423

EVENT_TYPE FunctionName(UI_WINDOW_OBJECT *object,
ULEVENT &event, EVENT_TYPE ccode);

returnValueout indicates if an error has occurred. returnValue should be 0 if the
no error occurred. Otherwise, the programmer should call the error system with
an appropriate error message and return -1.

objectin is a pointer to the object for which the user function is being called.
This argument must be typecast by the programmer if class-specific members
need to be accessed.

eventin is the run-time message passed to the object.

ccodein is the logical or system code that caused the user function to be called.
This code (declared in UI_WIN.HPP) will be one of the following constant
values:

L_SELECT—The slider was clicked on with the mouse or the end-user
pressed a key that updated the slider's value. If this ccode is received,
EVENT_TYPE will have one of the following values:

L_BOTTOM—Indicates that the slider value is being set to its
minimum value.

L_CONTINUE_SELECT—Indicates that the slider thumb button is
being dragged.

L_DOWN—Indicates that the slider value is decreasing by one interval.
This will occur if the down arrow or left arrow key is pressed.

L_END_SELECT—Indicates that the slider thumb button is finished
being dragged.

L_PGDN—Indicates that the slider value is decreasing by one interval.
This will occur if the <Page Down> key is pressed or if the slider shaft
is clicked below or to the left of the thumb button.

L_PGUP—Indicates that the slider value is increasing by one interval.
This will occur if the <Page Up> key is pressed or if the slider shaft is
clicked above or to the right of the thumb button.

424 OpenZinc Application Framework—Programmer's Reference Volume 2

L_TOP—Indicates that the slider value is being set to its maximum
value.

L_UP—Indicates that the slider value is increasing by one interval.
This will occur if the up arrow or right arrow key is pressed.

S_CURRENT—The object just received focus because the user moved to
it from another field or window.

S_NON_CURRENT—The object just lost focus because the user moved to
another field or window.

Example
#include <ui_win.hpp>

ExampleFunction(UI_WINDOW_MANAGER *windowManager) {
// Add a text field to the window.
UIW_WINDOW *window =

UIW_WINDOW::Generic(0, 0, 40, 10, "Hello World Window");
*window

+ &(*new UIW_TEXT(0, 0, 0, 0, "Hello, World!", 1024,
WNF_NO_FLAGS, WOF_NON_FIELD_REGION)
+ new UIW_SCROLL_BAR(0, 0, 0, 0, SBF_CORNER)
+ new UIW_SCROLL_BAR(0, 0, 0, 0, SBF_VERTICAL)
+ new UIW_SCROLL_BAR(0, 0, 0, 0, SBF_HORIZONTAL));

*windowManager + window;

// The scroll bar will automatically be destroyed when the text field
// is destroyed.

}

UIW_SCROLL_BAR::~UIW_SCROLL_BAR

Syntax
#include <ui_win.hpp>

virtual ~UIW_SCROLL_BAR(void);

Chapter 20 - UIW_SCROLL_BAR 425

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This virtual destructor destroys the class information associated with the UIW_SCROLL_-
BAR object.

UIW_SCROLL_BAR::ClassName

Syntax
#include <ui_win.hpp>

virtual ZIL_ICHAR *ClassName(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows
• Macintosh • OSF/Motif • Curses

Remarks

This virtual function returns the object's class name.

• returnValueout is a pointer to _className.

426 OpenZinc Application Framework—Programmer's Reference Volume 2

• OS/2
• NEXTSTEP

UIW_SCROLL_BAR::Drawltem

Syntax
#include <ui_win.hpp>

virtual EVENT_TYPE DrawItem(const UI_EVENT &event, EVENT_TYPE ccode);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This virtual advanced function is used to draw the object. If the WOS_OWNERDRAW
status is set for the object, this function will be called when drawing the scroll bar or
slider. This allows the programmer to derive a new class from UIW_SCROLL_BAR and
handle the drawing of the scroll bar or slider, if desired.

• returnValueout is a response based on the success of the function call. If the object
is drawn, the function returns a non-zero value. If the object is not drawn, 0 is
returned.

• eventin contains the run-time message that caused the object to be redrawn.
event.region contains the region in need of updating. The following logical events
may be sent to the Drawltem() function:

S_CURRENT, S_NON_CURRENT, S_DISPLAY_ACTIVE and S_DIS-
PLAY_INACTIVE—Cause the object to be redrawn.

WM_DRAWITEM—Causes the object to be redrawn. This message is specific
to Windows and OS/2.

Expose—Causes the object to be redrawn. This message is specific to Motif.

• ccodein contains the logical interpretation of event.

Chapter 20 - UIW_SCROLL_BAR 427

UlW_SCROLL_BAR::Event

Syntax
include <ui_win.hpp>

virtual EVENT_TYPE Event(const UI_EVENT &event);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function processes run-time messages sent to the scroll bar or slider object. It is
declared virtual so that any derived scroll bar class can override its default operation.

• returnValueout indicates how event was processed. If the event is processed
successfully, the function returns the logical type of event that was interpreted from
event. If the event could not be processed, S_UNKNOWN is returned.

• eventin contains a run-time message for the scroll bar or slider object. The type of
operation performed depends on the interpretation of the event. The following logical
events are processed by Event():

L_BEGIN_SELECT—Indicates that the end-user began the selection of the
object by pressing the mouse button down while on the object.

L_DOWN—Causes the slider to decrement its value by one interval. This
message is interpreted from a keyboard event.

L_LEFT—Causes the slider to decrement its value by one interval. This
message is interpreted from a keyboard event.

L_RIGHT—Causes the slider to increment its value by one interval. This
message is interpreted from a keyboard event.

428 OpenZinc Application Framework—Programmer's Reference Volume 2

L_UP—Causes the slider to increment its value by one interval. This message
is interpreted from a keyboard event.

S_CHANGED—Causes the object to recalculate its position and size. When a
window is moved or sized, the objects on the window will need to recalculate
their positions. This message informs an object that it has changed and that it
should update itself.

S_CREATE—Causes the object to create itself. The object will calculate its
position and size and, if necessary, will register itself with the operating system.
This message is sent by the Window Manager when a window is attached to it
to cause the window and all the objects attached to the window to determine
their positions.

S_CURRENT—Causes the object to draw itself to appear current. This message
is sent by the Window Manager to a window when it becomes current. The
window, in turn, passes this message to the object on the window that is current.

S_DEINITIALIZE—Informs the object that it is about to be removed from the
application and that it should deinitialize any information. The Window Manager
sends this message to a window when the window is subtracted from the
Window Manager. The window, in turn, relays the message to all objects
attached to it.

S_DISPLAY_ACTIVE—Causes the object to draw itself to appear active. An
active object is one that is on the active (i.e., current) window. Most objects do
not display differently whether they are active or inactive. An active object
should not be confused with a current object. An object is active if it is on the
active window. However, it may not be the current object on the window.

The region that needs to be redisplayed is passed in the UI_REGION portion of
the UI_EVENT structure when this message is sent. The object only needs to
redisplay when the region passed by the event overlaps the region of the object.
This message is sent by a UIW_WINDOW to all the non-current, active objects
attached to it.

S_DISPLAY_INACTIVE—Causes the object to draw itself to appear inactive.
An inactive object is one that is not on the active (i.e., current) window. Most
objects do not display differently whether they are inactive or active.

The region that needs to be redisplayed is passed in the UI_REGION portion of
the UI_EVENT structure when this message is sent. The object only needs to

Chapter 20 - UIW_SCROLL_BAR 429

redisplay when the region passed with the event overlaps the region of the object.
This message is sent by a UIW_WINDOW to all the objects attached to it.

S_HSCROLL—Causes the thumb button of the horizontal scroll bar or slider
to be re-positioned, event.scroll.delta contains the change in value for the scroll
bar or slider object.

S_HSCROLL_SET—Sets the scroll information for the horizontal scroll bar or
slider. The thumb button location will be updated to reflect the values.
event, scroll will contain the new scroll information.

S_INITIALIZE—Causes the object to initialize any necessary information that
may require a knowledge of its parent or siblings. When a window is added to
the Window Manager, the Window Manager sends this message to cause the
window and all the objects attached to the window to initialize themselves.

S_MOVE—Causes the object to update its location. The distance to move is
contained in the position field of UI_EVENT. For example, an event.position.-
line of -10 and an event.position.column of 15 moves the object 10 lines up and
15 columns to the right.

S_NON_CURRENT—Indicates that the object has just become non-current.
This message is received when the user moves to another field or window.

S_REDISPLAY—Causes the object to redraw.

S_REGISTER_OBJECT—Causes the object to register itself with the operating
system.

S_VSCROLL—Causes the thumb button of the vertical scroll bar or slider to
be re-positioned, event.scroll.delta contains the change in value for the scroll bar
or slider object.

S_VSCROLL_SET—Sets the scroll information for the vertical scroll bar or
slider. The thumb button location will be updated to reflect the values.
event.scroll will contain the new scroll information.

All other events are passed by Event() to UIW_WINDOW::Event() for processing.

NOTE: Because most graphical operating systems already process their own events
related to this object, the messages listed above may not be handled in every
environment. Wherever possible, OpenZinc allows the operating system to process its own

430 OpenZinc Application Framework—Programmer's Reference Volume 2

messages so that memory use and speed will be as efficient as possible. In these
situations, the system event can be trapped in a derived Event() function.

UIW_SCROLL_BAR::Information

Syntax
#include <ui_win.hpp>

virtual void *Information(ZIL_INFO_REQUEST request, void "data,
ZIL_OBJECTID objectID = ID_DEFAULT);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function allows OpenZinc Application Framework objects and programmer functions to
get or modify specified information about an object.

• returnValueout is a pointer to the return data that was requested. The type of the
return data depends on the request. If the request did not require the return of
information, this value is NULL.

• requestin is a request to get or set information associated with the object. The
following requests (defined in UI_WIN.HPP) are recognized by the scroll bar or
slider:

I_CHANGED_FLAGS—Informs the object that the programmer has changed
some flags associated with the object and that the object should update itself
accordingly. This request should be sent after changing an object's flags,
particularly if the new flag settings will change the visual appearance of the
object.

I_CLEAR_FLAGS—Clears the current flag settings for the object. If this
request is sent, data should be a pointer to a variable of type UIF_FLAGS that

Chapter 20 - UIW_SCROLL_BAR 431

contains the flags to be cleared, and objectID should indicate the type of object
with which the flags are associated. For example, if the programmer wishes to
clear the WOF_FLAGS of an object, objectID should be ID_WINDOW_-
OBJECT. If the SBF_FLAGS are to be cleared, objectID should be ID_-
SCROLL_BAR. This allows the object to process the request at the proper level.
This request only clears those flags that are passed in; it does not simply clear
the entire field.

I_GET_FLAGS—Requests the current flag settings for the object. If this
request is sent, data should be a pointer to a variable of type UIF_FLAGS, and
objectID should indicate the type of object with which the flags are associated.
For example, if the programmer wishes to obtain the WOF_FLAGS of an object,
objectID should be ID_WINDOW_OBJECT. If the SBF_FLAGS are desired,
objectID should be ID_SCROLL_BAR. This allows the object to process the
request at the proper level.

I_GET_VALUE—Returns the scroll bar's or slider's current value. If this
message is sent, data must be a pointer to a variable of type int where the
object's value will be copied.

I_INITIALIZE_CLASS—Causes the object to initialize any basic information
that does not require a knowledge of its parent or sibling objects. This request
is sent from the constructor of the object.

I_SET_FLAGS—Sets the current flag settings for the object. If this request is
sent, data should be a pointer to a variable of type UIF_FLAGS that contains the
flags to be set, and objectID should indicate the type of object with which the
flags are associated. For example, if the programmer wishes to set the WOF_-
FLAGS of an object, objectID should be ID_WINDOW_OBJECT. If the SBF_-
FLAGS are to be set, objectID should be ID_SCROLL_BAR. This allows the
object to process the request at the proper level. This request only sets those
flags that are passed in; it does not clear any flags that are already set.

I_SET_VALUE—Sets the scroll bar's or slider's current value. If this message
is sent, data must be a pointer to a variable of type int that contains the object's
new value.

All other requests are passed by Information() to UIW_WINDOW::Information()
for processing.

432 OpenZinc Application Framework—Programmer's Reference Volume 2

• datain/out is used to provide information to the function or to receive the information
requested, depending on the type of request. In general, this must be space allocated
by the programmer.

• objectIDin is a ZIL_OBJECTID that specifies which type of object the request is
intended for. Because the Information() function is virtual, it is possible for an
object to be able to handle a request at more than one level of its inheritance
hierarchy. objectID removes the ambiguity by specifying which level of an object's
hierarchy should process the request. If no value is provided for objectID, the object
will attempt to interpret the request with the objectID of the actual object type.

Example
#include <ui_win.hpp>

ExampleFunction() {
SBF_FLAGS flags;
scrollBar- information (I_GET_FLAGS, &flags, ID_SCROLL_BAR) ;

}

Storage Members

This section describes those class members that are used for storage purposes.

UIW_SCROLL_BAR::UIW_SCROLL_BAR

Syntax
#include <ui_win.hpp>

UIW_SCROLL_BAR(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object,
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

Chapter 20 - UIW_SCROLL_BAR 433

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced constructor creates a new UIW_SCROLL_BAR by loading the object from
a data file. Typically, the programmer does not need to use this constructor. If a scroll
bar or slider is stored in a data file it is usually stored as part of a UIW_WINDOW and
will be loaded when the window is loaded.

• namein is the name of the object to be loaded.

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT::objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT:. userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

434 OpenZinc Application Framework—Programmer's Reference Volume 2

UIW_SCROLL_BAR::Load

Syntax
#include <ui_win.hpp>

virtual void Load(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced function is used to load a UIW_SCROLL_BAR from a persistent object
data file. It is called by the persistent constructor and is typically not used by the
programmer.

• namein is the name of the object to be loaded.

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT:.objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

Chapter 20 - UIW_SCROLL_BAR 435

• userTablem is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT:. userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

UIW_SCROLL_BAR::New

Syntax
#include <ui_win.hpp>

static UI_WINDOW_OBJECT *New(const ZIL_ICHAR *name,
ZIL_STORAGE_READ_ONLY *file =

ZIL_NULLP(ZIL_STORAGE_READ_ONLY),
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY),
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows
• Macintosh • OSF/Motif • Curses

Remarks
This advanced function is used to load a persistent object from a data file. This function
is a static class member so that its address can be placed in a table used by the library to
load persistent objects from a data file.

NOTE: The application must first create a display if objects are to be loaded from a data
file.

• namein is the name of the object to be loaded.

• OS/2
• NEXTSTEP

436 OpenZinc Application Framework—Programmer's Reference Volume 2

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT:.objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT:. userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

UIW_SCROLL_BAR::NewFunction

Syntax
#include <ui_win.hpp>

virtual ZIL_NEW_FUNCTION NewFunction(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Chapter 20 - UIW_SCROLL_BAR 437

Remarks
This virtual function returns a pointer to the object's New() function.

• returnValueout is a pointer to the object's New() function.

UIW_SCROLL_BAR::Store

Syntax
#include <ui_win.hpp>

virtual void Store(const ZIL_ICHAR *name, ZIL_STORAGE *file,
ZIL_STORAGE_OBJECT *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced function is used to write an object to a data file.

• namein is the name of the object to be stored.

• filein is a pointer to the ZIL_STORAGE where the persistent object will be stored.
For more information on persistent object files, see "Chapter 66—ZIL_STORAGE"
of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT where the persistent object
information will be stored. This must be allocated by the programmer. For more
information on loading persistent objects, see "Chapter 68—ZIL_STORAGE_-
OBJECT" of Programmer's Reference Volume 1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see

438 OpenZinc Application Framework—Programmer's Reference Volume 2

the description of UI_WINDOW_OBJECT::objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT:.-userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

Chapter 20 - UIW_SCROLL_BAR 439

OpenZinc Application Framework—Programmer's Reference Volume 2 440

CHAPTER 21 - UIW SPIN CONTROL

The UIW_SPIN_CONTROL class object is used to allow the end-user to select a value
from a finite range of values. The spin control can be used to set integer, real and
bignum values, as well as times and dates. In addition, any user-derived object can be
used with the spin control as long as the object processes the I_DECREMENT_VALUE
and I_INCREMENT_VALUE requests in its Information() function. The object is
called a spin control because it can be thought of as a wheel with the set of values
arranged around the outside of the wheel. The end-user spins the wheel bringing each
possible value into view. The end-user can type a value into the field or he can spin
through the values until the desired value is displayed. The figure below shows a
graphical implementation of a UIW_SPIN_CONTROL class object:

The UIW_SPIN_CONTROL class is declared in UI_WIN.HPP. Its public and protected
members are:

class ZIL_EXPORT_CLASS UIW_SPIN_CONTROL : public UIW_WINDOW {
public:

static ZIL_ICHAR _className[];
static int defaultlnitialized;

UIW_SPIN_CONTROL(int left, int top, int width,
UI_WINDOW_OBJECT *fieldObject, ZIL_INT32 _delta = 1,
WNF_FLAGS wnFlags = WNF_NO_FLAGS,
WOF_FLAGS woFlags = WOF_NO_FLAGS,
ZIL_USER_FUNCTION .userFunction = ZIL_NULLF(ZIL_USER_FUNCTION));

virtual ~UIW_SPIN_CONTROL(void);
virtual ZIL_ICHAR *ClassName(void);
virtual EVENT_TYPE Event(const UI_EVENT &event);
virtual void *Information(ZIL_INFO_REQUEST request, void *data,

ZIL_OBJECTID objectID = ID_DEFAULT);
#if defined(ZIL_MOTIF)

virtual void RegionMax(UI_WINDOW_OBJECT *object);
#endif

Chapter 21 - UIW_SPIN_CONTROL 441

#if defined(ZIL_LOAD)
virtual ZIL_NEW_FUNCTION NewFunction(void);
static UI_WINDOW_OBJECT *New(const ZIL_ICHAR *name,

ZIL_STORAGE_READ_ONLY *file = ZIL_NULLP(ZIL_STORAGE_READ_ONLY),
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY),
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM),
const ZIL_ICHAR *languageName = ZIL_NULLP(ZIL_ICHAR));

UIW_SPIN_CONTROL(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object,
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM),
const ZIL_ICHAR *1anguageName = ZIL_NULLP(ZIL_ICHAR));

virtual void Load(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object,
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

#endif
#if defined(ZIL_STORE)

virtual void Store(const ZIL_ICHAR *name,
ZIL_STORAGE *file = ZIL_NULLP(ZIL_STORAGE),
ZIL_STORAGE_OBJECT *object = ZIL_NULLP(ZIL_STORAGE_OBJECT),
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

#endif

General Members

This section describes those members that are used for general purposes.

_className contains a string identifying the class. The string is always the same
name as the class, is always in English, and never changes. For example, for the
UIW_SPIN_CONTROL class, _className is "UIW_SPIN_CONTROL."

• defaultlnitialized indicates if the default decorations (i.e., images) for this object have
been set up. The default decorations are located in the file IMG_DEF.CPP. If
defaultlnitialized is TRUE, the decorations have been set up. Otherwise they have
not been.

UIW_SPIN_CONTROL::UIW_SPIN_CONTROL

Syntax
#include <ui_win.hpp>

UIW_SPIN_CONTROL(int left, int top, int width,
UI_WINDOW_OBJECT *fieldObject, ZIL_INT32 _delta = 1,

442 OpenZinc Application Framework—Programmer's Reference Volume 2

WNF_FLAGS wnFlags = WNF_NO_FLAGS,
WOF_FLAGS woFlags = WOF_NO_FLAGS,
ZIL_USER_FUNCTION _userFunction = ZIL_NULLF(ZIL_USER_FUNCTION));

Portability
This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics • Windows
• OSF/Motif • Curses

• OS/2
• NEXTSTEP

Remarks
This constructor creates a new UIW_SPIN_CONTROL class object.

• left i n and topin is the starting position of the spin control field within its parent
window. Typically, these values are in cell coordinates. If the WOF_MINICELL
flag is set, however, these values will be interpreted as minicell values.

• widthin is the width of the spin control. Typically, this value is in cell coordinates.
If the WOF_MINICELL flag is set, however, this value will be interpreted as a
minicell value. The height of the spin control is determined automatically by the
UIW_SPIN_CONTROL object.

• fieldObjectin is the object whose value is to be set. This can be a pointer to a
UIW_BIGNUM, UIWJDATE, UIW_INTEGER, UIW_REAL, UIW_TIME or any
user-derived object that processes I_DECREMENT_VALUE and I_INCREMENT_-
VALUE requests in its Information() function. This object will be destroyed when
the spin control is destroyed. fieldObject must have its range member set. The
range defines the acceptable values that can be spun into view. The range can
consist of multiple ranges, which will be spun through in the proper numerical or
chronological order. If the range is an open-ended range, the WNF_NO_WRAP flag
should be set on the spin control.

• _deltain is the value by which the fieldObject value will be adjusted when the object
is spun. _delta is simply added to or subtracted from fieldObject\ value, so _delta
should be specified in units appropriate to fieldObjecf s type. For example, if
fieldObject is a UIW_TIME object, _delta must be given in hundredths of seconds.
When the spin control is spun up or down, the I_DECREMENT_VALUE or I_IN-
CREMENTJVALUE request is sent to the fieldObjecf s Information() function.
_delta is passed to the Information() function as the data parameter.

Chapter 21 - UIW_SPIN_CONTROL 443

• wnFlagsin are flags that define the operation of the spin control. The following flags
(declared in UI_WIN.HPP) control the general presentation of the spin control:

WNF_NO_FLAGS—Does not associate any special flags with the spin control.
This flag should not be used in conjunction with any other WNF flags.

WNF_NO_WRAP—Will not allow spinning up or down to wrap from the
maximum value in the range to the lowest or vice versa. This flag should be set
if the object has an open-ended range.

• woFlagsin are flags (common to all window objects) that determine the general
operation of the spin control object. The following flags (declared in UI_WIN.HPP)
control the general presentation of, and interaction with, a UIW_SPIN_CONTROL
class object:

WOF_NO_FLAGS—Does not associate any special window flags with the
object. This flag should not be used in conjunction with any other WOF flags.

WOF_NON_SELECTABLE—Prevents the object from being selected. If this
flag is set, the user will not be able to position on nor select any menu items.
Typically, the object will be drawn in such a manner as to appear non-selectable
(e.g., it may appear lighter than a selectable field).

WOF_VIEW_ONLY—Prevents the object from being edited. However, the
object may become current and the user may scroll through the data, mark it, and
copy it.

• _userFunctionin is a programmer defined function that will be called by the library
at certain points in the user's interaction with an object. The user function will be
called by the library when:

1—the user moves onto the field,

2—the <ENTER> key is pressed while the field is current, or

3—the user moves to a different field in the window or to a different window.

Because the user function is called at these times, the programmer can do data
validation or any other type of necessary operation. The definition of the
userFunction is as follows:

444 OpenZinc Application Framework—Programmer's Reference Volume 2

EVENT_TYPE FunctionName(UI_WINDOW_OBJECT *object,
UI_EVENT &event, EVENT_TYPE ccode);

returnValueout indicates if an error has occurred. returnValue should be 0 if the
no error occurred. Otherwise, the programmer should call the error system with
an appropriate error message and return -1.

objectin is a pointer to the object for which the user function is being called.
This argument must be typecast by the programmer if class-specific members
need to be accessed.

eventin is the run-time message passed to the object.

ccodein is the logical or system code that caused the user function to be called.
This code (declared in UI_WIN.HPP) will be one of the following constant
values:

L_SELECT—The <ENTER> key was pressed while the field was current.

S_CURRENT—The object just received focus because the user moved to
it from another field or window. This code is sent before any editing
operations are permitted.

S_NON_CURRENT—The object just lost focus because the user moved to
another field or window.

UIW_SPIN_CONTROL::~UIW_SPIN_CONTROL

Syntax
#include <ui_win.hpp>

virtual ~UIW_SPIN_CONTROL(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Chapter 21 - UIW_SPIN_CONTROL 445

Remarks
This virtual destructor destroys the class information associated with the UIW_SPIN_-
CONTROL object.

UlW_SPIN_CONTROL::ClassName

Syntax
#include <ui_win.hpp>

virtual ZIL_ICHAR *ClassName(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks

This virtual function returns the object's class name.

• returnValueout is a pointer to _className.

UIW_SPIN_CONTROL::Event

Syntax
#include <ui_win.hpp>

virtual EVENT_TYPE Event(const UI_EVENT &event);

446 OpenZinc Application Framework—Programmer's Reference Volume 2

Portability
This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics • Windows
• OSF/Motif • Curses

• OS/2
• NEXTSTEP

Remarks
This function processes run-time messages sent to the spin control object. It is declared
virtual so that any derived spin control class can override its default operation.

• returnValueout indicates how event was processed. If the event is processed
successfully, the function returns the logical type of event that was interpreted from
event. If the event could not be processed, S_UNKNOWN is returned.

• eventin contains a run-time message for the spin control object. The type of operation
performed depends on the interpretation of the event. The following logical events
are processed by Event():

L_BEGIN_SELECT—Indicates that the end-user began the selection of the
object by pressing the mouse button down while on the object.

L_CONTINUE_SELECT—Indicates that the end-user previously clicked down
on the object with the mouse and is now continuing to hold the mouse button
down while on the object.

L_DOWN—Causes the displayed value to be decremented.

L_END_SELECT—Indicates that the selection process, initiated with the L_-
BEGIN_SELECT message, is complete. For example, the end-user has pressed
and released the mouse button.

L_SELECT—Indicates that the object has been selected. The selection may be
the result of a mouse click or a keyboard action.

L_UP—Causes the displayed value to be incremented.

L_VIEW—Indicates that the mouse is being moved over the object. This
message allows the object to alter the mouse image.

Chapter 21 - UIW_SPIN_CONTROL 447

S_CHANGED—Causes the object to recalculate its position and size. When a
window is moved or sized, the objects on the window will need to recalculate
their positions. This message informs an object that it has changed and that it
should update itself.

S_CREATE—Causes the object to create itself. The object will calculate its
position and size and, if necessary, will register itself with the operating system.
This message is sent by the Window Manager when a window is attached to it
to cause the window and all the objects attached to the window to determine
their positions.

S_CURRENT—Causes the object to draw itself to appear current. This message
is sent by the Window Manager to a window when it becomes current. The
window, in turn, passes this message to the object on the window that is current.

S_DEINITIALIZE—Informs the object that it is about to be removed from the
application and that it should deinitialize any information. The Window Manager
sends this message to a window when the window is subtracted from the
Window Manager. The window, in turn, relays the message to all objects
attached to it.

S_DISPLAY_ACTIVE—Causes the object to draw itself to appear active. An
active object is one that is on the active (i.e., current) window. Most objects do
not display differently whether they are active or inactive. An active object
should not be confused with a current object. An object is active if it is on the
active window. However, it may not be the current object on the window.

The region that needs to be redisplayed is passed in the UI_REGION portion of
the UI_EVENT structure when this message is sent. The object only needs to
redisplay when the region passed by the event overlaps the region of the object.
This message is sent by a UIW_WINDOW to all the non-current, active objects
attached to it.

S_DISPLAY_INACTIVE—Causes the object to draw itself to appear inactive.
An inactive object is one that is not on the active (i.e., current) window. Most
objects do not display differently whether they are inactive or active.

The region that needs to be redisplayed is passed in the UI_REGION portion of
the UI_EVENT structure when this message is sent. The object only needs to
redisplay when the region passed with the event overlaps the region of the object.
This message is sent by a UIW_WINDOW to all the objects attached to it.

448 OpenZinc Application Framework—Programmer's Reference Volume 2

S_INITIALIZE—Causes the object to initialize any necessary information that
may require a knowledge of its parent or siblings. When a window is added to
the Window Manager, the Window Manager sends this message to cause the
window and all the objects attached to the window to initialize themselves.

S_MOVE—Causes the object to update its location. The distance to move is
contained in the position field of UI_EVENT. For example, an event.position.-
line of -10 and an event.position.column of 15 moves the object 10 lines up and
15 columns to the right.

S_NON_CURRENT—Indicates that the object has just become non-current.
This message is received when the user moves to another field or window.

S_REGISTER_OBJECT—Causes the object to register itself with the operating
system.

S_RESET_DISPLAY—Changes the display to a different resolution, event.data
should point to the new display class to be used. If event.data is NULL, then
a text mode display will be created. This event is specific to DOS and must be
placed on the event queue by the programmer. The library will never generate
this event.

All other events are passed by Event() to UIW_WINDOW::Event() for processing.

UIW_SPIN CONTROL:information

Syntax
#include <ui_win.hpp>

virtual void *Information(ZIL_INFO_REQUEST request, void "data,
ZIL_OBJECTID objectID = ID_DEFAULT);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Chapter 21 - UIW_SPIN_CONTROL 449

Remarks
This function allows OpenZinc Application Framework objects and programmer functions to
get or modify specified information about an object.

• returnValueout is a pointer to the return data that was requested. The type of the
return data depends on the request. If the request did not require the return of
information, this value is NULL.

• requestin is a request to get or set information associated with the object. The
following requests (defined in UI_WIN.HPP) are recognized by the spin control:

I_CHANGED_FLAGS—Informs the object that the programmer has changed
some flags associated with the object and that the object should update itself
accordingly. This request should be sent after changing an object's flags,
particularly if the new flag settings will change the visual appearance of the
object.

I_COPY_TEXT—Copies the text associated with the object into a buffer
provided by the programmer. If this request is sent, data must be the address of
a buffer where the string's text will be copied. This buffer must be large enough
to contain all of the characters associated with the field and the terminating
NULL character.

I_GET_TEXT—Returns a pointer to the text associated with the object. If this
request is sent, data should be a doubly-indirected pointer to ZIL_ICHAR. This
request does not copy the text into a new buffer.

I_GET_VALUE—Returns the value associated with the field. If this message
is sent, data must be a pointer to a variable where the field's value will be
copied. This request is processed by fieldObject, so the returned value is specific
to fieldObjecf s type.

I_INITIALIZE_CLASS—Causes the object to initialize any basic information
that does not require a knowledge of its parent or sibling objects. This request
is sent from the constructor of the object.

I_SET_TEXT—Sets the text associated with the object. This request will also
redisplay the object with the new text, data should be a pointer to the new text.

I_SET_VALUE—Sets the value associated with the field. If this message is
sent, data must be a pointer to a variable that contains the field's new value.

450 OpenZinc Application Framework—Programmer's Reference Volume 2

This request is processed by fieldObject, so the value is specific to fieldObject's
type.

All other requests are passed by Information() to UIW_WINDOW::Information()
for processing.

• datain/out is used to provide information to the function or to receive the information
requested, depending on the type of request. In general, this must be space allocated
by the programmer.

• objectIDin is a ZIL_OBJECTID that specifies which type of object the request is
intended for. Because the Information() function is virtual, it is possible for an
object to be able to handle a request at more than one level of its inheritance
hierarchy. objectID removes the ambiguity by specifying which level of an object's
hierarchy should process the request. If no value is provided for objectID, the object
will attempt to interpret the request with the objectID of the actual object type.

Example
#include <ui_win.hpp>

ExampleFunction()
{

UIF_FLAGS wnflags ;
spinControl->Informat ion(I_GET_FLAGS, &wnflags, ID_WINDOW);

}

Storage Members

This section describes those class members that are used for storage purposes.

UIW_SPIN_CONTROL::UIW_SPIN_CONTROL

Syntax
#include <ui_win.hpp>

UIW_SPIN_CONTROL(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object,

Chapter 21 - UIW_SPIN_CONTROL 451

UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced constructor creates a new UIW_SPIN_CONTROL by loading the object
from a data file. Typically, the programmer does not need to use this constructor. If a
spin control is stored in a data file it is usually stored as part of a UIW_WINDOW and
will be loaded when the window is loaded.

• namein is the name of the object to be loaded.

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT::objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT::userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library

452 OpenZinc Application Framework—Programmer's Reference Volume 2

will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

UIW_SPIN_CONTROL::Load

Syntax
#include <ui_win.hpp>

virtual void Load(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced function is used to load a UIW_SPIN_CONTROL from a persistent object
data file. It is called by the persistent constructor and is typically not used by the
programmer.

• namein is the name of the object to be loaded.

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see

Chapter 21 - UIW_SPIN_CONTROL 453

the description of UI_WINDOW_OBJECT:.objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT:.userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

UIW_SPIN_CONTROL::New

Syntax
#include <ui_win.hpp>

static UI_WINDOW_OBJECT *New(const ZIL_ICHAR *name,
ZIL_STORAGE_READ_ONLY *file =

ZIL_NULLP(ZIL_STORAGE_READ_ONLY),
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY),
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced function is used to load a persistent object from a data file. This function
is a static class member so that its address can be placed in a table used by the library to
load persistent objects from a data file.

454 OpenZinc Application Framework—Programmer's Reference Volume 2

NOTE: The application must first create a display if objects are to be loaded from a data
file.

• namein is the name of the object to be loaded.

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT: .objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT::userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

UIW_SPIN_CONTROL::NewFunction

Syntax
#include <ui_win.hpp>

virtual ZIL_NEW_FUNCTION NewFunction(void);

Chapter 21 - UIW_SPIN_CONTROL 455

Portability
This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics • Windows
• OSF/Motif • Curses

• OS/2
• NEXTSTEP

Remarks
This virtual function returns a pointer to the object's New() function.

returnValueout is a pointer to the object's New() function.

UIW_SPIN_CONTROL:-.Store

Syntax
#include <ui_win.hpp>

virtual void Store(const ZIL_ICHAR *name, ZIL_STORAGE *file,
ZIL_STORAGE_OBJECT *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced function is used to write an object to a data file.

• namein is the name of the object to be stored.

• filein is a pointer to the ZIL_STORAGE where the persistent object will be stored.
For more information on persistent object files, see "Chapter 66—ZIL_STORAGE"
of Programmer's Reference Volume 1.

456 OpenZinc Application Framework—Programmer's Reference Volume 2

• objectin is a pointer to the ZIL_STORAGE_OBJECT where the persistent object
information will be stored. This must be allocated by the programmer. For more
information on loading persistent objects, see "Chapter 68—ZIL_STORAGE_-
OBJECT" of Programmer's Reference Volume 1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT::objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UIW_WINDOW_OBJECT::userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

Chapter 21 - UIW_SPIN_CONTROL 457

OpenZinc Application Framework—Programmer's Reference Volume 2 458

CHAPTER 22 - UIW_STATUS_BAR

The UIW_STATUS_BAR class object is used to present status information to the end-
user. The status bar appears at the bottom of the window to which it is attached. It
always covers the entire width of the window. Any object that has a Drawltem()
function can be displayed on the status bar. This includes string, date, time and number
fields; icons; buttons and other derived objects. The status bar is not an interactive object.
The objects on the status bar are intended to present information to the end-user, not to
obtain feedback from them. Geometry management constraints can be placed on objects
on the status bar, if desired. The figure below shows a graphical implementation of a
UIW_STATUS_BAR class object with various window objects:

The UIW_STATUS_BAR class is declared in UI_WIN.HPP. Its public and protected
members are:

class UIW_STATUS_BAR : public UIW_WINDOW {
public:

static ZIL_ICHAR _className[];

UIW_STATUS_BAR(int _height = 1,
WOF_FLAGS _woFlags = WOF_BORDER | WOF_SUPPORT_OBJECT);

virtual ~UIW_STATUS_BAR(void);
virtual ZIL_ICHAR *ClassName(void);
virtual EVENT_TYPE Drawltem(const UI_EVENT &event, EVENT_TYPE ccode);
virtual EVENT_TYPE Event(const UI_EVENT &event);
virtual void information(ZIL_INFO_REQUEST request, void *data,

ZIL_OBJECTID objectID = ID_DEFAULT);

#if defined (ZIL_LOAD)
static UI_WINDOW_OBJECT *New(const ZIL_ICHAR *name,

ZIL_STORAGE_READ_ONLY *file = ZIL_NULLP(ZIL_STORAGE_READ_ONLY) ,
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY),
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM) ,
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

UIW_STATUS_BAR(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,

Chapter 22 - UIW_STATUS_BAR 459

ZIL_STORAGE_OBJECT_READ_ONLY *object,
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM) ,
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

virtual void Load(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

#endif
#if defined(ZIL_STORE)

virtual void Store(const ZIL_ICHAR *name, ZIL_STORAGE *file,
ZIL_STORAGE_OBJECT *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

#endif

protected:
int height;

} ;

General Members

This section describes those members that are used for general purposes.

_className contains a string identifying the class. The string is always the same
name as the class, is always in English, and never changes. For example, for the
UIW_STATUS_BAR class, _className is "UIW_STATUS_BAR."

• height is the height of the status bar.

UIW_STATU S_BAR::UIW_STATU S_BAR

Syntax
#include <ui_win.hpp>

UIW_STATUS_BAR(int height = 1,
WOF_FLAGS _woFlags = WOF_BORDER | WOF_SUPPORT_OBJECT);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows
• Macintosh • OSF/Motif • Curses

• OS/2
• NEXTSTEP

460 OpenZinc Application Framework—Programmer's Reference Volume 2

Remarks
This constructor creates a new UIW_STATUS_BAR class object.

• heightin is the height of the status bar. Typically, this value is in cell coordinates.
If the WOF_MINICELL flag is set, however, this value will be interpreted as a
minicell value.

• _woFlagsin are flags (common to all window objects) that determine the general
operation of the status bar object. The following flags (declared in UI_WIN.HPP)
control the general presentation of a UIW_STATUS_BAR class object:

WOF_BORDER—Draws a border around the object. The graphical border's
appearance will depend on the operating system used, and, if in DOS, on the
graphics style being used. In text mode, a border may or may not be drawn,
depending on the text style being used. See "Appendix A—Support
Definitions" in this manual for information on changing DOS graphics mode
styles and text mode styles. This flag is set by default in the constructor.

WOF_MINICELL—Causes the position and size values that were passed into
the constructor to be interpreted as minicells. A minicell is a fraction the size
of a normal cell. Greater precision in object placement is achieved by specifying
an object's position in minicell coordinates. A minicell is l/10th the size of a
normal cell by default.

WOF_NO_FLAGS—Does not associate any special window flags with the
object. This flag should not be used in conjunction with any other WOF flags.

WOF_NON_FIELD_REGION—Causes the object to ignore its position and
size parameters and use the remaining available space in its parent object. The
status bar is always a non-field region object, even if this flag is not set
explicitly.

WOF_SUPPORT_OBJECT—Causes the object to be placed in the parent
object's support list. The support list is reserved for objects that are not
displayed as part of the user region of the window. The user region is the area
of the window framed by, but not including, the support objects. If this flag is
set the status bar will not be scrolled or overwritten. If the flag is not set, and
the window is scrolled, the status bar will scroll with the window and objects on
the window may overwrite the status bar if they overlap. This flag is set by
default in the constructor.

Chapter 22 - UIW_STATUS_BAR 461

UIW STATUS BAR::~UIW STATUS BAR

Syntax
#include <ui_win.hpp>

virtual ~UIW_STATUS_BAR(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This virtual destructor destroys the class information associated with the UIW_STATUS.
BAR object. All objects attached to the status bar will also be destroyed.

UIW_STATUS_BAR::ClassName

Syntax
#include <ui_win.hpp>

virtual ZIL_ICHAR *ClassName(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This virtual function returns the class name associated with the object.

462 OpenZinc Application Framework—Programmer's Reference Volume 2

• returnValueout is a pointer to the _className member.

UIW_STATUS_BAR::DrawItem

Syntax
#include <ui_win.hpp>

virtual EVENT_TYPE DrawItem(const UI_EVENT &event, EVENT_TYPE ccode);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This virtual advanced function is used to draw the object. If the WOS_OWNERDRAW
status is set for the object, this function will be called when drawing the status bar. This
allows the programmer to derive a new class from UIW_STATUS_BAR and handle the
drawing of the status bar, if desired. The status bar has the WOS_OWNERDRAW status
set by default.

• returnValueout is a response based on the success of the function call. If the object
is drawn the function returns a non-zero value. If the object is not drawn, 0 is
returned.

• eventin contains the run-time message that caused the object to be redrawn.
event.region contains the region in need of updating. The following logical events
may be sent to the Drawltem() function:

S_CURRENT, S_NON_CURRENT, S_DISPLAY_ACTIVE and S_DIS-
PLAY_INACTIVE—Messages that cause the object to be redrawn.

WM_DRAWITEM—A message that causes the object to be redrawn. This
message is specific to Windows and OS/2.

Chapter 20 - UIW_SCROLL_BAR 463

Expose—A message that causes the object to be redrawn. This message is
specific to Motif.

• ccodein contains the logical interpretation of event.

UIW_STATUS_BAR::Event

Syntax
#include <ui_win.hpp>

virtual EVENT_TYPE Event(const UI_EVENT &event);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function processes run-time messages sent to the status bar object. It is declared
virtual so that any derived status bar class can override its default operation.

• returnValueout indicates how event was processed. If the event is processed
successfully, the function returns the logical type of event that was interpreted from
event. If the event could not be processed, S_UNKNOWN is returned.

• eventin contains a run-time message for the status bar object. The type of operation
performed depends on the interpretation of the event. The following logical events
are processed by Event():

S_CHANGED—Causes the object to recalculate its position and size. When a
window is moved or sized, the objects on the window will need to recalculate
their positions. This message informs an object that it has changed and that it
should update itself.

S_CREATE—Causes the object to create itself. The object will calculate its
position and size and, if necessary, will register itself with the operating system.

464 OpenZinc Application Framework—Programmer's Reference Volume 2

This message is sent by the Window Manager when a window is attached to it
to cause the window and all the objects attached to the window to determine
their positions.

S_INITIALIZE—Causes the object to initialize any necessary information that
may require a knowledge of its parent or siblings. When a window is added to
the Window Manager, the Window Manager sends this message to cause the
window and all the objects attached to the window to initialize themselves.

S_MOVE—Causes the object to update its location. The distance to move is
contained in the position field of UI_EVENT. For example, an event.position.-
line of -10 and an event.position.column of 15 moves the object 10 lines up and
15 columns to the right.

S_REGISTER_OBJECT—Causes the object to register itself with the operating
system.

All other events are passed by Event() to UIW_WINDOW::Event() for processing.

UIW STATUS_BAR::Information

Syntax
#include <ui_win.hpp>

virtual void *Information(ZIL_INFO_REQUEST request, void *data,
ZIL_OBJECTID objectID = IDJDEFAULT);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function allows OpenZinc Application Framework objects and programmer functions to
get or modify specified information about an object.

Chapter 20 - UIW_SCROLL_BAR 465

• returnValueout is a pointer to the return data that was requested. The type of the
return data depends on the request. If the request did not require the return of
information, this value is NULL.

• requestin is a request to get or set information associated with the object. The
following requests (defined in UI_WIN.HPP) are recognized by the status bar:

I_CHANGED_FLAGS—Informs the object that the programmer has changed
some flags associated with the object and that the object should update itself
accordingly. This request should be sent after changing an object's flags,
particularly if the new flag settings will change the visual appearance of the
object.

I_INITIALIZE_CLASS—Causes the object to initialize any basic information
that does not require a knowledge of its parent or sibling objects. This request
is sent from the constructor of the object.

All other requests are passed by Information() to UIW_WINDOW::Information()
for processing.

• datain/out is used to provide information to the function or to receive the information
requested, depending on the type of request. In general, this must be space allocated
by the programmer.

• objectIDin is a ZIL_OBJECTID that specifies which type of object the request is
intended for. Because the Information() function is virtual, it is possible for an
object to be able to handle a request at more than one level of its inheritance
hierarchy. objectID removes the ambiguity by specifying which level of an object's
hierarchy should process the request. If no value is provided for objectID, the object
will attempt to interpret the request with the objectID of the actual object type.

Example
#include <ui_win.hpp>

ExampleFunction() {
UIF_FLAGS woflags ;
statusBar-information(I_GET_FLAGS, &woflags, ID_WINDOW_OBJECT) ;

}

466 OpenZinc Application Framework—Programmer's Reference Volume 2

Storage Members

This section describes those class members that are used for storage purposes.

UIW_STATUS_BAR::UIW_STATUS_BAR

Syntax
#include <ui_win.hpp>

UIW_STATUS_BAR(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object,
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced constructor creates a new UIW_STATUS_BAR by loading the object from
a data file. Typically, the programmer does not need to use this constructor. If a status
bar is stored in a data file it is usually stored as part of a UIW_WINDOW and will be
loaded when the window is loaded.

• namein is the name of the object to be loaded.

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter

Chapter 22 - UIW_STATUS_BAR 467

69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT::objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OB JECT::userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

UIW_STATUS_BAR::Load

Syntax
#include <ui_win.hpp>

virtual void Load(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced function is used to load a UIW_STATUS_BAR from a persistent object
data file. It is called by the persistent constructor and is typically not used by the
programmer.

468 OpenZinc Application Framework—Programmer's Reference Volume 2

• namein is the name of the object to be loaded.

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT::objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT::userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

UIW_STATUS_BAR::New

Syntax
#include <ui_win.hpp>

static UI_WINDOW_OBJECT *New(const ZIL_ICHAR *name,
ZIL_STORAGE_READ_ONLY *file =

ZIL_NULLP(ZIL_STORAGE_READ_ONLY),
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY),
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

Chapter 22 - UIW_STATUS_BAR 469

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced function is used to load a persistent object from a data file. This function
is a static class member so that its address can be placed in a table used by the library to
load persistent objects from a data file.

NOTE: The application must first create a display if objects are to be loaded from a data
file.

• namein is the name of the object to be loaded.

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT::objectTable in "Chapter 43—UIJWIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT:. userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

470 OpenZinc Application Framework—Programmer's Reference Volume 2

UIW_STATUS_BAR::NewFunction

Syntax
#include <ui_win.hpp>

virtual ZIL_NEW_FUNCTION NewFunction(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks

This virtual function returns a pointer to the object's New() function.

• returnValueout is a pointer to the object's New() function.

UIW STATUS BAR::Store

Syntax
#include <ui_win.hpp>

virtual void Store(const ZIL_ICHAR *name, ZIL_STORAGE *file,
ZIL_STORAGE_OBJECT *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Chapter 20 - UIW_SCROLL_BAR 471

Remarks
This advanced function is used to write an object to a data file.

• namein is the name of the object to be stored.

• filein is a pointer to the ZIL_STORAGE where the persistent object will be stored.
For more information on persistent object files, see "Chapter 66—ZIL_STORAGE"
of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT where the persistent object
information will be stored. This must be allocated by the programmer. For more
information on loading persistent objects, see "Chapter 68—ZIL_STORAGE_-
OBJECT" of Programmer's Reference Volume 1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT:.objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT::userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

472 OpenZinc Application Framework—Programmer's Reference Volume 2

CHAPTER 23 - UIW STRING

The UIW_STRING class is used to display string information and to collect information,
in string form, from an end-user. The figure below shows a graphical implementation of
a UIW_STRING object:

The UIW_STRING class is declared in UI_WIN.HPP. Its public and protected members
are:

class ZIL_EXPORT_CLASS UIW_STRING : public UI_WINDOW_OBJECT {
public:

static ZIL_ICHAR _className[];
STF_FLAGS stFlags;
int insertMode;

UIW_STRING(int left, int top, int width, ZIL_ICHAR *text,
int maxLength = -1,
STF_FLAGS stFlags = STF_NO_FLAGS,
WOF_FLAGS woFlags = WOF_BORDER | WOF_AUTO_CLEAR,
ZIL_USER_FUNCTION userFunction = ZIL_NULLF(ZIL_USER_FUNCTION));

virtual ~UIW_STRING(void);
virtual ZIL_ICHAR *ClassName(void);
virtual EVENT_TYPE Event(const UI_EVENT &event);
ZIL_ICHAR *DataGet(void);
void DataSet(ZIL_ICHAR *text, int maxLength = -1);
virtual void *Information(ZIL_INFO_REQUEST request, void *data,

ZIL_OBJECTID objectID = ID_DEFAULT);

#if defined (ZIL_LOAD)
virtual ZIL_NEW_FUNCTION NewFunction(void);
static UI_WINDOW_OBJECT *New(const ZIL_ICHAR *name,

ZIL_STORAGE_READ_ONLY *file = ZIL_NULLP(ZIL_STORAGE_READ_ONLY),
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY),
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM) ,
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

Chapter 23 - UIW_STRING 473

UIW_STRING(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object,
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

virtual void Load(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

#endif
#if defined(ZIL_STORE)

virtual void Store(const ZIL_ICHAR *name, ZIL_STORAGE *file,
ZIL_STORAGE_OBJECT *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

#endif

protected:
int maxLength;
ZIL_ICHAR *text;

virtual EVENT_TYPE Drawltem(const UI_EVENT kevent, EVENT_TYPE ccode);
ZIL_ICHAR *ParseRange(ZIL_ICHAR *buffer, ZIL_ICHAR *minValue,

ZIL_ICHAR *maxValue);
} ;

General Members

This section describes those members that are used for general purposes.

• _className contains a string identifying the class. The string is always the same
name as the class, is always in English, and never changes. For example, for the
UIW_STRING class, _className is "UIW_STRING."

• stFlags are flags that define the operation of the UIW_STRING class. A full
description of the string flags is given in the UIW_STRING constructor.

• insertMode indicates whether the string is in insert or overstrike mode. If insertMode
is TRUE, the string is in insert mode. Otherwise the string is in overstrike mode.

• maxLength is the maximum length of the string buffer. maxLength does not include
the NULL terminator.

• text is the text that is displayed in the string.

474 OpenZinc Application Framework—Programmer's Reference Volume 2

UIW_STRING::UIW_STRING

Syntax
#include <ui_win.hpp>

UIW_STRING(int left, int top, int width, ZIL_ICHAR *text, int maxLength = -1,
STF_FLAGS stFlags = STF_NO_FLAGS,
WOF_FLAGS woFlags = WOF_BORDER | WOF_AUTO_CLEAR,
ZIL_USER_FUNCTION userFunction = ZIL_NULLF(ZIL_USER_FUNCTION));

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This constructor creates a new UIW_STRING class object.

• left in and topin is the starting position of the string field within its parent window.
Typically, these values are in cell coordinates. If the WOF_MINICELL flag is set,
however, these values will be interpreted as minicell values.

• widthin is the width of the string field. Typically, this value is in cell coordinates.
If the WOF_MINICELL flag is set, however, this value will be interpreted as a
minicell value. The height of the string field is determined automatically by the
UIW_STRING object.

textin is the text that is shown on the string. Unless the WOF_NO_ALLOCATE_-
DATA flag is set, the text is copied into a buffer, allocated by the UIW_STRING
object, which is maxLength + 1 characters in length. If the WOF_NO_-
ALLOCATE J)ATA flag is set, text must be space, allocated by the programmer, that
is not deleted until the string field is deleted.

• maxLengthin is the maximum length of the string buffer, excluding the NULL
terminator. The UIW_STRING object will automatically allocate extra space for the
NULL terminator. If maxLength is -1 (default value), the size of the string buffer
allocated is the initial length of text, including the NULL terminator.

Chapter 23 - UIW_STRING 475

• stFlagsin describes how the string should display. The following flags (declared in
UI_WIN.HPP) control the general presentation of a UIW_STRING class object:

STF_LOWER_CASE—Displays all characters in lowercase.

STF_NO_FLAGS—Does not associate any special flags with the string object.
This flag should not be used in conjunction with any other STF flags.

STF_PASSWORD—Prevents characters from being echoed to the field.
Instead, displayed characters will be an operating system-specific password
character (e.g., '*').

STF_UPPER_CASE—Displays all characters in uppercase.

STF_VARIABLE_NAME—Converts spaces to underscores (i.e., '_').

• woFlagsin are flags (common to all window objects) that determine the general
operation of the string object. The following flags (declared in UI_WIN.HPP) affect
the operation of the UIW_STRING class object:

WOF_AUTO_CLEAR—Automatically marks the entire buffer if the end-user
tabs to the field from another object. If the user then enters data (without first
having pressed any movement or editing keys) the entire field will be replaced.
This flag is set by default in the constructor.

WOF_BORDER—Draws a border around the object. The graphical border's
appearance will depend on the operating system used, and, if in DOS, on the
graphics style being used. In text mode, a border may or may not be drawn,
depending on the text style being used. See "Appendix A—Support
Definitions" in this manual for information on changing DOS graphics mode
styles and text mode styles. This flag is set by default in the constructor.

WOF_JUSTIFY_CENTER—Center-justifies the data within the displayed field.

WOF_JUSTIFY_RIGHT—Right-justifies the data within the displayed field.

WOF_MINICELL—Causes the position and size values that were passed into
the constructor to be interpreted as minicells. A minicell is a fraction the size
of a normal cell. Greater precision in object placement is achieved by specifying
an object's position in minicell coordinates. A minicell is l/10th the size of a
normal cell by default.

476 OpenZinc Application Framework—Programmer's Reference Volume 2

WOF_NO_ALLOCATE_DATA—Prevents the object from allocating a buffer
to store the data. If this flag is set, the programmer is responsible for allocating
the memory for the data. The programmer is also responsible for deallocating
that memory when it is no longer needed.

WOF_NO_FLAGS—Does not associate any special window flags with the
object. Setting this flag left-justifies the data. This flag should not be used in
conjunction with any other WOF flags.

WOF_NON_FIELD_REGION—Causes the object to ignore its position and
size parameters and use the remaining available space in its parent object.

WOF_NON_SELECTABLE—Prevents the object from being selected. If this
flag is set, the user will not be able to position on nor edit the string information.
Typically, the field will be drawn in such a manner as to appear non-selectable
(e.g., it may appear lighter than a selectable field).

WOF_UNANSWERED—Sets the initial status of the field to be "unanswered."
An unanswered field is displayed as an empty field.

WOF_VIEW_ONLY—Prevents the object from being edited. However, the
object may become current and the user may scroll through the data, mark it, and
copy it.

• userFunctionin is a programmer defined function that will be called by the library at
certain points in the user's interaction with an object. The user function will be
called by the library when:

1—the user moves onto the field,

2—the <ENTER> key is pressed while the field is current or, if the field is in
a list, the mouse is clicked on it, or

3—the user moves to a different field in the window or to a different window.

Because the user function is called at these times, the programmer can do data
validation or any other type of necessary operation. The definition of the
userFunction is as follows:

EVENT_TYPE FunctionName(UI_WINDOW_OBJECT *object,
UI_EVENT &event, EVENT_TYPE ccode);

Chapter 23 - UIW_STRING All

returnValueout indicates if an error has occurred. returnValue should be 0 if the
no error occurred. Otherwise, the programmer should call the error system with
an appropriate error message and return -1.

objectin is a pointer to the object for which the user function is being called.
This argument must be typecast by the programmer if class-specific members
need to be accessed.

eventin is the run-time message passed to the object.

ccodein is the logical or system code that caused the user function to be called.
This code (declared in UI_WIN.HPP) will be one of the following constant
values:

L_SELECT—The <ENTER> key was pressed while the field was current
or, if the field is in a list, the mouse was clicked on the field.

S_CURRENT—The object just received focus because the user moved to
it from another field or window. This code is sent before any editing
operations are permitted.

S_NON_CURRENT—The object just lost focus because the user moved to
another field or window.

Example
#include <ui_win.hpp>

ExampleFunction(UI_WINDOW_MANAGER *windowManager) {
// Add a string field to the window.
UIW_WINDOW *window = new UIW_WINDOW(0, 0, 40, 10);
*window

+ new UIW_STRING(10, 1, 20, "Sample string", 256);

// The string object will automatically be destroyed when the window
// is destroyed.

}

478 OpenZinc Application Framework—Programmer's Reference Volume 2

UIW_STRING::~UIW_STRING

Syntax

#include <ui_win.hpp>

virtual ~UIW_STRING(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This virtual destructor destroys the class information associated with the UIW_STRING
object.

UlW_STRING::ClassName

Syntax
#include <ui_win.hpp>

virtual ZIL_ICHAR *ClassName(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This virtual function returns the object's class name.

Chapter 23 - UIW_STRING 479

• returnValueout is a pointer to _className.

UIW_STRING::DataGet

Syntax

#include <ui_win.hpp>

ZIL_ICHAR *DataGet(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function returns the text information associated with the string object.

• returnValueout is a pointer to the text information associated with the string.

Example
#include <ui_win.hpp>

ExampleFunction(UIW_STRING *string) {
ZIL_ICHAR *text = string->DataGet();

}

480 OpenZinc Application Framework—Programmer's Reference Volume 2

UIW STRING::DataSet

Syntax
#include <ui_win.hpp>

void DataSet(ZIL_ICHAR *text, int maxLength = -1);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function assigns new text to the UIW_STRING object and redisplays the field. If
no text is passed in (i.e., text is NULL), the field will be redrawn.

• textin is a pointer to the new text. If the WOF_NO_ALLOCATE_DATA flag is set,
this argument must be a string, allocated by the programmer, that is not destroyed
until the UIW_STRING class object is destroyed. Otherwise, the information
associated with this argument is copied by the UIW_STRING class object. If this
argument is NULL, no string information is changed, but the string field is
redisplayed.

• maxLengthin is the number of characters to allocate for the string buffer. If max-
Length is greater than the string's previous length, a new buffer of size maxLength
+ 1 (for the NULL terminator) is allocated. Otherwise, if maxLength is -1 or less
than the size of the previous string, the previous buffer is used.

Example
#include <ui_win.hpp>
ExampleFunction(UIW_STRING *string) {

string->DataSet("Hello World!");
}

Chapter 23 - UIW_STRING 481

UIW_STRING::Drawltem

Syntax
#include <ui_win.hpp>

virtual EVENT_TYPE DrawItem(const UI_EVENT &event, EVENT_TYPE ccode);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This virtual advanced function is used to draw the object. If the WOS_OWNERDRAW
status is set for the object, this function will be called when drawing the string. This
allows the programmer to derive a new class from UIW_STRING and handle the drawing
of the string, if desired.

• returnValueout is a response based on the success of the function call. If the object
is drawn the function returns a non-zero value. If the object is not drawn, 0 is
returned.

• eventin contains the run-time message that caused the object to be redrawn.
event, region contains the region in need of updating. The following logical events
may be sent to the Drawltem() function:

S_CURRENT, S_NON_CURRENT, S_DISPLAY_ACTIVE and S_DIS-
PLAY_INACTIVE—Messages that cause the object to be redrawn.

WM_DRAWITEM—A message that causes the object to be redrawn. This
message is specific to Windows and OS/2.

Expose—A message that causes the object to be redrawn. This message is
specific to Motif.

• ccodein contains the logical interpretation of event.

482 OpenZinc Application Framework—Programmer's Reference Volume 2

UIW_STRING::Event

Syntax
#include <ui_win.hpp>

virtual EVENT_TYPE Event(const UI_EVENT &event);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function processes run-time messages sent to the string object. It is declared virtual
so that any derived string class can override its default operation.

• returnValueout indicates how event was processed. If the event is processed
successfully, the function returns the logical type of event that was interpreted from
event. If the event could not be processed, S_UNKNOWN is returned.

• eventin contains a run-time message for the string object. The type of operation
performed depends on the interpretation of the event. The following logical events
are processed by Event():

E_KEY—Indicates that a key has been pressed. It places the character in the
string at the current cursor position unless the string is already maxLength
characters. This message is interpreted from a keyboard event.

L_BACKSPACE—Causes the first editable character to the left of the cursor
position to be deleted and moves the cursor to that position. This message is
interpreted from a keyboard event.

L_BEGIN_MARK, L_CONTINUE_MARK and L_END_MARK—Com-
municate the progress of a mark operation. L_BEGIN_MARK indicates that the
marking process is beginning, L_CONTINUE_MARK indicates the growth or
decrease of the marked region, and L_END_MARK indicates the end of the
marking operation. Using a mouse, for example, L_BEGIN_MARK indicates

Chapter 23 - UIW_STRING 483

that the mouse button has been pressed, L_CONTINUE_MARK indicates that
the mouse is currently being dragged with the button depressed, and L_END_-
MARK indicates that the mouse button has been released. These messages are
interpreted from mouse events.

L_BOL—Causes the cursor to move to the beginning of the line. For example,
where the underscore represents the cursor position, the string Stand and be
counted would change to Stand and be counted as a result of the L_BOL
message. If the mark feature is on, L_BOL extends the marked region to the
beginning of the line. This message is interpreted from a keyboard event.

L_COPY_MARK—Causes the marked region to be copied into the global paste
buffer. This message is interpreted from a keyboard event.

L_CUT—Cuts the marked portion of the string. The cut region is stored in the
global paste buffer. This message is interpreted from a keyboard event.

L_DELETE—Causes the marked characters, if any, or the character at the
current cursor position, to be deleted. For example, where the underscore
represents the cursor position, the string Stand and be counted would change to
Stand ad be counted as a result of the L_DELETE message. This message is
interpreted from a keyboard event.

L_DELETE_EOL—Causes all characters from the current cursor position to the
end of the line to be deleted. For example, where the underscore represents the
cursor position, the string Stand and be counted would change to Stand a_ as a
result of the L_DELETE_EOL message. This message is interpreted from a
keyboard event.

L_DELETE_WORD—Causes the word at the cursor position to be deleted,
along with any trailing spaces. For example, where the underscore represents the
cursor position, the string Stand and be counted would change to Stand be
counted as a result of the L_DELETE_WORD message. This message is
interpreted from a keyboard event.

L_END_SELECT—Indicates that the selection process, initiated with the L_-
BEGIN_SELECT message, is complete. For example, the end-user has pressed
and released the mouse button. The user function will be called.

L_EOL—Causes the cursor to move to the end of the string field. For example,
where the underscore represents the cursor position, the string Stand and be
counted would change to Stand and be counted_ as a result of the L_EOL

484 OpenZinc Application Framework—Programmer's Reference Volume 2

message. If the mark feature is on, L_EOL extends the marked region to the end
of the line. This message is interpreted from a keyboard event.

L_INSERT_TOGGLE—Toggles the insert mode. If the current mode is insert
mode, any entered character will be inserted into the string at the cursor position.
For instance, if the character 'n' were entered, the string Stand ad be counted
would change to Stand and be counted.

If the current mode is overstrike mode, any entered character will replace the
character at the cursor position. For instance, if the character'd' were entered,
the string Stand and be counted would change to Stand add be counted. This
message is interpreted from a keyboard event.

L_LEFT—Causes the cursor to move one character or space to the left of its
current position, if it is not in the field's first editable position. If the mark
feature is on, L_LEFT extends the marked region to include the character. This
message is interpreted from a keyboard event.

L_MARK—Turns the mark feature on or off. This message is interpreted from
a keyboard event.

L_MARK_BOL—Marks the string from the current cursor position to the
beginning of the string and places the cursor at the beginning of the string. This
message is interpreted from a keyboard event.

L_MARK_EOL—Marks the string from the current cursor position to the end
of the string and places the cursor at the end of the string. This message is
interpreted from a keyboard event.

L_MARK_LEFT—Moves the cursor to the left one character, marking the
character. This message is interpreted from a keyboard event.

L_MARK_RIGHT—Moves the cursor to the right one character, marking the
character. This message is interpreted from a keyboard event.

L_PASTE—Causes the contents of the paste buffer to be placed in the field at
the current cursor position. For example, if the contents of the paste buffer were
up, the string Stand and be counted would change to Stand up and be counted.
If the contents are too large for the string field, only that portion which fits will
be pasted. This message is interpreted from a keyboard event.

L_RIGHT—Causes the cursor to move one character or space to the right of its
current position, if it is not in the field's last editable position. If the mark

Chapter 23 - UIW_STRING 485

feature is on, L_RIGHT extends the marked region to include the character. This
message is interpreted from a keyboard event.

L_SELECT—Indicates that the object has been selected. The selection may be
the result of a mouse click or a keyboard action.

L_WORD_LEFT—Causes the cursor position to be moved to the beginning of
the current word or, if the cursor is at the beginning of the current word, to the
beginning of the next word to the left of the current cursor position. For
example, where the underscore represents the cursor position, the string Stand
and be counted would change to Stand and be counted, as a result of the
L_WORD_LEFT message. This message is interpreted from a keyboard event.

L_WORD_RIGHT—Causes the cursor to move to the beginning of the next
word to the right of the current cursor position. For example, where the
underscore represents the cursor position, the string Stand and be counted would
change to Stand and be counted as a result of the L_WORD_RIGHT message.
This message is interpreted from a keyboard event.

S_CHANGED—Causes the object to recalculate its position and size. When a
window is moved or sized, the objects on the window will need to recalculate
their positions. This message informs an object that it has changed and that it
should update itself.

S_CREATE—Causes the object to create itself. The object will calculate its
position and size and, if necessary, will register itself with the operating system.
This message is sent by the Window Manager when a window is attached to it
to cause the window and all the objects attached to the window to determine
their positions.

S_CURRENT—Causes the object to draw itself to appear current. This message
is sent by the Window Manager to a window when it becomes current. The
window, in turn, passes this message to the object on the window that is current.

S_DEINITIALIZE—Informs the object that it is about to be removed from the
application and that it should deinitialize any information. The Window Manager
sends this message to a window when the window is subtracted from the
Window Manager. The window, in turn, relays the message to all objects
attached to it.

S_DISPLAY_ACTIVE—Causes the object to draw itself to appear active. An
active object is one that is on the active (i.e., current) window. Most objects do
not display differently whether they are active or inactive. An active object

486 OpenZinc Application Framework—Programmer's Reference Volume 2

should not be confused with a current object. An object is active if it is on the
active window. However, it may not be the current object on the window.

The region that needs to be redisplayed is passed in the UI_REGION portion of
the UI_EVENT structure when this message is sent. The object only needs to
redisplay when the region passed by the event overlaps the region of the object.
This message is sent by a UIW_WINDOW to all the non-current, active objects
attached to it.

S_DISPLAY_INACTIVE—Causes the object to draw itself to appear inactive.
An inactive object is one that is not on the active (i.e., current) window. Most
objects do not display differently whether they are inactive or active.

The region that needs to be redisplayed is passed in the UI_REGION portion of
the UI_EVENT structure when this message is sent. The object only needs to
redisplay when the region passed with the event overlaps the region of the object.
This message is sent by a UIW_WINDOW to all the objects attached to it.

S_HSCROLL—Causes the string to scroll its contents. The amount to scroll is
contained in event.scroll.delta.

S_INITIALIZE—Causes the object to initialize any necessary information that
may require a knowledge of its parent or siblings. When a window is added to
the Window Manager, the Window Manager sends this message to cause the
window and all the objects attached to the window to initialize themselves.

S_MOVE—Causes the object to update its location. The distance to move is
contained in the position field of UI_EVENT. For example, an event.position. -
line of -10 and an event.position.column of 15 moves the object 10 lines up and
15 columns to the right.

S_NON_CURRENT—Indicates that the object has just become non-current.
This message is received when the user moves to another field or window.

S_REGISTER_OBJECT—Causes the object to register itself with the operating
system.

S_VERIFY_STATUS—Causes the object to correlate its state (e.g., cursor
position) with the operating system.

All other events are passed by Event() to UI_WINDOW_OBJECT::Event() for
processing.

Chapter 23 - UIW_STRING 487

NOTE: Because most graphical operating systems already process their own events
related to this object, the messages listed above may not be handled in every
environment. Wherever possible, OpenZinc allows the operating system to process its own
messages so that memory use and speed will be as efficient as possible. In these
situations, the system event can be trapped in a derived Event() function.

UIW_STRING::Information

Syntax
#include <ui_win.hpp>

virtual void *Information(ZIL_INFO_REQUEST request, void *data,
ZIL_OBJECTID objectID = ID_DEFAULT);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function allows OpenZinc Application Framework objects and programmer functions to
get or modify specified information about an object.

• returnValueout is a pointer to the return data that was requested. The type of the
return data depends on the request. If the request did not require the return of
information, this value is NULL.

• requestin is a request to get or set information associated with the object. The
following requests (defined in UI_WIN.HPP) are recognized by the string:

I_CHANGED_FLAGS—Informs the object that the programmer has changed
some flags associated with the object and that the object should update itself
accordingly. This request should be sent after changing an object's flags,
particularly if the new flag settings will change the visual appearance of the
object.

488 OpenZinc Application Framework—Programmer's Reference Volume 2

I_CLEAR_FLAGS—Clears the current flag settings for the object. If this
request is sent, data should be a pointer to a variable of type UIF_FLAGS that
contains the flags to be cleared, and objectID should indicate the type of object
with which the flags are associated. For example, if the programmer wishes to
clear the WOF_FLAGS of an object, objectID should be ID_WINDOW_-
OBJECT. If the STF_FLAGS are to be cleared, objectID should be ID_-
STRING. This allows the object to process the request at the proper level. This
request only clears those flags that are passed in; it does not simply clear the
entire field.

I_COPY_TEXT—Copies the text associated with the object into a buffer
provided by the programmer. If this request is sent, data must be the address of
a buffer where the string's text will be copied. This buffer must be large enough
to contain all of the characters associated with the string and the terminating
NULL character.

I_GET_FLAGS—Requests the current flag settings for the object. If this
request is sent, data should be a pointer to a variable of type UIF_FLAGS, and
objectID should indicate the type of object with which the flags are associated.
For example, if the programmer wishes to obtain the WOF_FLAGS of an object,
objectID should be ID_WINDOW_OBJECT. If the STF_FLAGS are desired,
objectID should be ID_STRING. This allows the object to process the request
at the proper level.

I_GET_MAXLENGTH—Gets the maxLength value. If data is NULL, the
address of maxLength will be returned. Otherwise, data should be a pointer to
an integer where maxLength will be copied.

I_GET_TEXT—Returns a pointer to the text associated with the object. If this
request is sent, data should be a doubly-indirected pointer to ZIL_ICHAR. This
request does not copy the text into a new buffer.

| JNITIALIZE_CLASS—Causes the object to initialize any basic information
that does not require a knowledge of its parent or sibling objects. This request
is sent from the constructor of the object.

I_SET_FLAGS—Sets the current flag settings for the object. If this request is
sent, data should be a pointer to a variable of type UIF_FLAGS that contains the
flags to be set, and objectID should indicate the type of object with which the
flags are associated. For example, if the programmer wishes to set the WOF_-
FLAGS of an object, objectID should be ID_WINDOW_OBJECT. If the STF_-
FLAGS are to be set, objectID should be ID_STRING. This allows the object

Chapter 23 - UIW_STRING 489

to process the request at the proper level. This request only sets those flags that
are passed in; it does not clear any flags that are already set.

I_SET_MAXLENGTH—Sets the maxLength member. If this request is sent
data should be a pointer to an integer that contains the new maximum length.

I_SET_TEXT—Sets the text associated with the object. This request will also
redisplay the object with the new text, data should be a pointer to the new text.

All other requests are passed by Information) to UI_WINDOW_OBJECT::-
Information() for processing.

• datain/oul is used to provide information to the function or to receive the information
requested, depending on the type of request. In general, this must be space allocated
by the programmer.

• objectIDin is a ZIL_OBJECTID that specifies which type of object the request is
intended for. Because the Information() function is virtual, it is possible for an
object to be able to handle a request at more than one level of its inheritance
hierarchy. objectID removes the ambiguity by specifying which level of an object's
hierarchy should process the request. If no value is provided for objectID, the object
will attempt to interpret the request with the objectID of the actual object type.

Example
#include <ui_win.hpp>

ExampleFunction() {
ZIL_ICHAR *text;
string->Information(I_GET_TEXT, Stext);
stringl->Information(I_SET_TEXT, "First name");

}

490 OpenZinc Application Framework—Programmer's Reference Volume 2

UIW_STRING::ParseRange

Syntax
#include <ui_win.hpp>

ZIL_ICHAR *ParseRange(ZIL_ICHAR *buffer , ZIL_ICHAR *minValue,
ZIL_ICHAR *maxValue);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function is used to parse one of the ranges passed in to an object derived from
UIW_STRING.

• returnValueout indicates where in the range string parsing has progressed to.

• b u f f e r i n is a string containing the range.

• minValueout and maxValueout are the minimum and maximum range values that were
parsed from the range string pointed to by buffer.

Example
#include <ui_win.hpp>

int UIW_DATE::Validate(int processError = TRUE) {

// Check for an absolute date error.
ZIL_DATE currentDate;
ZIL_ICHAR *stringDate = (ZIL_1CHAR *)UIW_STRING::Information(I_GET_TEXT,

NULL);
DTI_RESULT errorCode = currentDate.Import(stringDate, dtFlags);

// Check for a range error,
if (range && errorCode == DTI_OK)

errorCode = DTI_OUT_OF_RANGE;

Chapter 23 - UIW_STRING 491

for (ZIL_ICHAR *tRange = range; tRange && errorCode == DTI_OUT_OF_RANGE;) {
ZIL_ICHAR minDate[64], maxDate[64];
tRange = ParseRange(tRange, minDate, maxDate);
if (currentDate >= ZIL_DATE(minDate, rangeFlags) &&

currentDate <= ZIL_DATE(maxDate, rangeFlags))
errorCode = DTI_OK;

}

return (errorCode);
}

Storage Members

This section describes those class members that are used for storage purposes.

UIW STRING::UIW STRING

Syntax
#include <ui_win.hpp>

UIW_STRING(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object,
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced constructor creates a new UIW_STRING by loading the object from a data
file. Typically, the programmer does not need to use this constructor. If a string object
is stored in a data file it is usually stored as part of a UIW_WINDOW and will be loaded
when the window is loaded.

492 OpenZinc Application Framework—Programmer's Reference Volume 2

name-to is the name of the object to be loaded.

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT:. objectTable in "Chapter 43—UIJVVIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT::userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

UIW_STRING::Load

Syntax
#include <ui_win.hpp>

virtual void Load(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

Chapter 23 - UIW_STRING 493

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced function is used to load a UIW_STRING from a persistent object data file.
It is called by the persistent constructor and is typically not used by the programmer.

• namein is the name of the object to be loaded.

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT::objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT::userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

494 OpenZinc Application Framework—Programmer's Reference Volume 2

UIW_STRING::New

Syntax
#include <ui_win.hpp>

static UI_WINDOW_OBJECT *New(const ZIL_ICHAR *name,
ZIL_STORAGE_READ_ONLY *file =

ZIL_NULLP(ZIL_STORAGE_READ_ONLY),
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY),
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced function is used to load a persistent object from a data file. This function
is a static class member so that its address can be placed in a table used by the library to
load persistent objects from a data file.

NOTE: The application must first create a display if objects are to be loaded from a data
file.

• namein is the name of the object to be loaded.

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

Chapter 23 - UIW_STRING 495

objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT::objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT::userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

UIW_STRING::NewFunction

Syntax
#include <ui_win.hpp>

virtual ZIL_NEW_FUNCTION NewFunction(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks

This virtual function returns a pointer to the object's New() function.

• returnValueout is a pointer to the object's New() function.

496 OpenZinc Application Framework—Programmer's Reference Volume 2

UlW_STRING "Store

Syntax
#include <ui_win.hpp>

virtual void Store(const ZIL_ICHAR *name, ZIL_STORAGE *file,
ZIL_STORAGE_OBJECT *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced function is used to write an object to a data file.

• namein is the name of the object to be stored.

• filein is a pointer to the ZIL_STORAGE where the persistent object will be stored.
For more information on persistent object files, see "Chapter 66—ZIL_STORAGE"
of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT where the persistent object
information will be stored. This must be allocated by the programmer. For more
information on loading persistent objects, see "Chapter 68—ZIL_STORAGE_-
OBJECT" of Programmer's Reference Volume 1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OB J ECT::objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the

Chapter 23 - UIW_STRING 497

description of UI_WINDOW_OBJECT:-.userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

498 OpenZinc Application Framework—Programmer's Reference Volume 2

CHAPTER 24 - UIW_SYSTEM_BUTTON

The UIW_SYSTEM_BUTTON class is used to provide a small menu of standard, general
options that can be performed on a window (e.g., size, move, maximize, minimize, etc.).
In addition, clicking on the system button can close the window. The figure below shows
a graphical implementation of a UIW_SYSTEM_BUTTON class object (the button with
the '—' character):

NOTE: The appearance and operation of the system button varies somewhat across
platforms. For example, in OS/2, the system button displays a small representation of the
application's minimize icon instead of the dash-like image shown in many other
environments.

There are also several significant differences in the operation of the system button on the
Macintosh. The first is that the Macintosh does not have the concept of a system button.
Instead, it has a close box. If the user clicks on the close box, the window closes. No
menu of options will appear. OpenZinc will ignore the menu options and they will have no
effect if used in a Macintosh application.

The second operational difference of the UIW_SYSTEM_BUTTON object on the
Macintosh is that it can be used to create the Apple menu's "About" item that is
common to Macintosh applications. If a UIW_POP_UP_ITEM with the WOF_SUP-
PORT_OBJECT flag set is added to the UIW_SYSTEM_BUTTON object, that pop-up
item will be used as the About item in Macintosh applications. In other environments,
the support pop-up item will be ignored by OpenZinc and will have no effect.

Chapter 24 - UIW_SYSTEM_BUTTON 499

The UIW_SYSTEM_BUTTON class is declared in UI_WIN.HPP. Its public and
protected members are:

class ZIL_EXPORT_CLASS UIW_SYSTEM_BUTTON : public UIW_BUTTON
{
public:

static ZIL_ICHAR _className[];
static int defaultlnitialized;
SYF_FLAGS syFlags;
UIW_POP_UP_MENU menu;

UIW_SYSTEM_BUTTON(SYF_FLAGS syFlags = SYF_NO_FLAGS);
UIW_SYSTEM_BUTTON(UI_ITEM *item);
virtual ~UIW_SYSTEM_BUTTON(void);
virtual ZIL_ICHAR *ClassName(void);
virtual EVENT_TYPE Event(const UI_EVENT &event);
static UIW_SYSTEM_BUTTON *Generic(void);
virtual void *Information(ZIL_INFO_REQUEST request, void *data,

ZIL_OBJECTID objectID = ID_DEFAULT);

#if defined(ZIL_LOAD)
virtual ZIL_NEW_FUNCTION NewFunction(void);
static UI_WINDOW_OBJECT *New(const ZIL_ICHAR *name,

ZIL_STORAGE_READ_ONLY *file = ZIL_NULLP(ZIL_STORAGE_READ_ONLY),
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY),
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

UIW_SYSTEM_BUTTON(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object,
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

virtual void Load(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

#endif
#if defined(ZIL_STORE)

virtual void Store(const ZIL_ICHAR *name, ZIL_STORAGE *file,
ZIL_STORAGE_OBJECT *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

#endif

// List members.
UI_WINDOW_OBJECT *Add(UI_WINDOW_OBJECT *object);
UI_WINDOW_OBJECT *Subtract(UI_WINDOW_OBJECT *object);
UIW_SYSTEM_BUTTON &operator+(UI_WINDOW_OBJECT *object);
UIW_SYSTEM_BUTTON koperator-(UI_WINDOW_OBJECT *object);

void SetDecorations(const ZIL_ICHAR *decorationName);
void SetLanguage(const ZIL_ICHAR *languageName);

protected:
const ZIL_LANGUAGE *myLanguage;
const ZIL_DECORATION *myDecorations;

} ;

General Members

This section describes those members that are used for general purposes.

500 OpenZinc Application Framework—Programmer's Reference Volume 2

• _className contains a string identifying the class. The string is always the same
name as the class, is always in English, and never changes. For example, for the
UIW_SYSTEM_BUTTON class, _className is "UIW_SYSTEM_BUTTON."

• defaultlnitialized indicates if the default language strings and decorations (i.e.,
images) for this object have been set up. The default strings are located in the file
LANG_DEF.CPP. The default decorations are located in the file IMG_DEF.CPP.
If defaultlnitialized is TRUE, the strings and decorations have been set up. Otherwise
they have not been.

• syFlags are flags that define the operation of the UIW_SYSTEM_BUTTON class.
A full description of the system button flags is given in the UIW_SYSTEM_-
BUTTON constructor.

• menu is a UIW_POP_UP_MENU that is used to maintain the list of UIW_POP_UP_-
ITEMs that serve as the options in the system menu. In most graphical operating
systems the display of the system menu is handled by the operating system. In these
environments, menu is used only to store the data to be presented on the system
menu. The data is passed to the operating system to display. If the operating system
does not handle displaying a system menu, such as in DOS, then menu is actually
added to the Window Manager when the system menu is displayed, menu has the
WOF_BORDER, WOAF_TEMPORARY and WOAF_NO_DESTROY flags set by
default.

• myLanguage is the ZIL_LANGUAGE object that contains the string translations for
this object.

• myDecorations is the ZIL_DECORATION object that contains the images for this
object.

UIW_SYSTEM_BUTTON::UIW_SYSTEM_BUTTON

Syntax
#include <ui_win.hpp>

UIW_SYSTEM_BUTTON(SYF_FLAGS syFlags = SYF_NO_FLAGS);
or

UIW_SYSTEM_BUTTON(UI_ITEM *item);

Chapter 24 - UIW_SYSTEM_BUTTON 501

Portability
This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics • Windows
• OSF/Motif • Curses

• OS/2
• NEXTSTEP

Remarks
These overloaded constructors create a new UIW_SYSTEM_BUTTON class object.

The first overloaded constructor creates a UIW_SYSTEM_BUTTON.

• syFlagsin are flags that define the operation of the UIW_SYSTEM_BUTTON class.
The following flags (declared in UI_WIN.HPP) control the general presentation of
a UIW_SYSTEM_BUTTON class object:

SYF_NO_FLAGS—Associates no special flags with the system button. If this
flag is set, the programmer must add UIW_POP_UP_ITEMs to the system button
or no pop-up menu will be displayed when the system button is selected. This
is the default argument in the constructor.

SYF_GENERIC—Creates a generic system button menu. The following pop-up
item entries are included in the system button menu:

Restore—Restores the window from either a maximized or a minimized
state.

Move—Puts the window into a mode that allows the window to be moved.

Size—Puts the window into a mode that allows the window to be sized.

Minimize—Minimizes the window.

Maximize—Maximizes the window.

Close—Closes the window.

In addition to the above options, the operating system may place one or more
other options in a generic system menu.

502 OpenZinc Application Framework—Programmer's Reference Volume 2

The second overloaded constructor creates a UIW_SYSTEM_BUTTON and adds to it
UIW_POP_UP_ITEMs created from the UI_ITEM array.

• itemin is an array of UI_ITEM structures that will be used to create the UIW_POP_-
UP_ITEM structures for the system button's menu. For more information regarding
the UI_ITEM structure, see "Chapter 18—UI_ITEM" of Programmer's Reference
Volume 1.

The system button object is always positioned in the upper left corner of the parent
window. To ensure that the system button is drawn correctly, it must be added right after
the UIW_MINIMIZE_BUTTON class object. The following example shows the correct
order of system button addition.

Example
#include <ui_win.hpp>

ExampleFunction(UI_WINDOW_MANAGER *windowManager)
{

// Create a new window and attach it to the window manager.
UIW_WINDOW *window = new UIW_WINDOW(0, 0, 40, 10);
*window

+ new UIW_BORDER
+ new UIW_MAXIMIZE_BUTTON
+ new UIW_MINIMIZE_BUTTON
+ &(*new UIW_SYSTEM_BUTTON

+ new UIW_POP_UP_ITEM("&Move", MNIF_MOVE)
+ new UIW_POP_UP_ITEM("&Size", MNIF_SIZE)
+ new UIW_POP_UP_ITEM
+ new UIW_POP_UP_ITEM ("&Close" , MNIF_CLOSE))

+ new UIW_TITLE("Window 1");
*windowManager + window;

// The system button will automatically be destroyed when the window
// is destroyed.

}

UIW_SYSTEM_BUTTON::~UIW_SYSTEM_BUTTON

Syntax
#include <ui_win.hpp>

virtual ~UIW_SYSTEM_BUTTON(void);

Chapter 24 - UIW_SYSTEM_BUTTON 503

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This virtual destructor destroys the class information associated with the UIW_SYSTEM_-
BUTTON object.

UIW_SYSTEM_BUTTON::ClassName

Syntax
#include <ui_win.hpp>

virtual ZIL_ICHAR *ClassName(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows
• Macintosh • OSF/Motif • Curses

Remarks

This virtual function returns the object's class name.

• returnValueout is a pointer to _className.

504 OpenZinc Application Framework—Programmer's Reference Volume 2

• OS/2
• NEXTSTEP

UIW_SYSTEM_BUTTON::Event

Syntax
#include <ui_win.hpp>

virtual EVENT_TYPE Event(const UI_EVENT &event);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function processes run-time messages sent to the system button object. It is declared
virtual so that any derived system button class can override its default operation.

• returnValueout indicates how event was processed. If the event is processed
successfully, the function returns the logical type of event that was interpreted from
event. If the event could not be processed, S_UNKNOWN is returned.

• eventin contains a run-time message for the system button object. The type of
operation performed depends on the interpretation of the event. The following logical
events are processed by Event():

L_BEGIN_SELECT—Indicates that the end-user began the selection of the
object by pressing the mouse button down while on the object.

L_CONTINUE_SELECT—Indicates that the end-user previously clicked down
on the object with the mouse and is now continuing to hold the mouse button
down while on the object.

L_SELECT—Indicates that the object has been selected. The selection may be
the result of a mouse click or a keyboard action.

S_ADD_OBJECT—Is used to add an new pop-up item to the receiving system
button's menu. A pointer to the new object must be in event.data. This message

Chapter 24 - UIW_SYSTEM_BUTTON 505

is interpreted only by those objects that contain a list (e.g., windows, horizontal
and vertical lists, combo boxes, etc.).

S_CHANGED—Causes the object to recalculate its position and size. When a
window is moved or sized, the objects on the window will need to recalculate
their positions. This message informs an object that it has changed and that it
should update itself.

S_CREATE—Causes the object to create itself. The object will calculate its
position and size and, if necessary, will register itself with the operating system.
This message is sent by the Window Manager when a window is attached to it
to cause the window and all the objects attached to the window to determine
their positions.

S_DEINITIALIZE—Informs the object that it is about to be removed from the
application and that it should deinitialize any information. The Window Manager
sends this message to a window when the window is subtracted from the
Window Manager. The window, in turn, relays the message to all objects
attached to it.

S_INITIALIZE—Causes the object to initialize any necessary information that
may require a knowledge of its parent or siblings. When a window is added to
the Window Manager, the Window Manager sends this message to cause the
window and all the objects attached to the window to initialize themselves.

S_RESET_DISPLAY—Changes the display to a different resolution, event.data
should point to the new display class to be used. If event.data is NULL, a text
mode display will be created. This event is specific to DOS and must be placed
on the event queue by the programmer. The library will never generate this
event.

S_SUBTRACT_OBJECT—Is used to subtract a pop-up item from the receiving
system button's menu. A pointer to the pop-up item must be in event.data. This
message is interpreted only by those objects that contain a list (e.g., windows,
horizontal and vertical lists, combo boxes, etc.).

All other events are passed by Event() to UIW_BUTTON::Event() for processing.

NOTE: Because most graphical operating systems already process their own events
related to this object, the messages listed above may not be handled in every
environment. Wherever possible, OpenZinc allows the operating system to process its own

506 OpenZinc Application Framework—Programmer's Reference Volume 2

messages so that memory use and speed will be as efficient as possible. In these
situations, the system event can be trapped in a derived Event() function.

UlW_SYSTEM_BUTTON "Generic

Syntax
#include <ui_win.hpp>

static UIW_SYSTEM_BUTTON *Generic(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function creates a generic system button that has the following options: Restore,
Move, Size, Minimize, Maximize and Close. In addition to these options, the operating
system may place one or more other options in a generic system menu.

• returnValueout is a pointer to the constructed UIW_SYSTEM_BUTTON object.

Example
#include <ui_win.hpp>

UIW_WINDOW *UIW_WINDOW::Generic(int left, int top, int width, int height,
char *title, UI_WINDOW_OBJECT *minObject, WOF_FLAGS woFlags,
WOAF_FLAGS woAdvancedFlags, int _helpContext)

{
UIW_WINDOW *window = new UIW_WINDOW(left, top, width, height, _icon,

woFlags, woAdvancedFlags, _helpContext);
// Add default window objects.
*window

+ new UIW_BORDER
+ new UIW_MAXIMIZE_BUTTON
+ new UIW_MINIMIZE_BUTTON
+ UIW_SYSTEM_BUTTON::Generic()
+ new UIW_TITLE(title);

Chapter 24 - UIW_SYSTEM_BUTTON 507

// Return a pointer to the new window,
return (window);

}

UIW_SYSTEM_BUTTON::Information

Syntax
#include <ui_win.hpp>

virtual void *Information(ZIL_INFO_REQUEST request, void *data,
ZIL_OBJECTID objectID = ID_DEFAULT);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function allows OpenZinc Application Framework objects and programmer functions to
get or modify specified information about an object.

• returnValueout is a pointer to the return data that was requested. The type of the
return data depends on the request. If the request did not require the return of
information, this value is NULL.

• requestin is a request to get or set information associated with the object. The
following requests (defined in UI_WIN.HPP) are recognized by the system button:

I_CHANGED_FLAGS—Informs the object that the programmer has changed
some flags associated with the object and that the object should update itself
accordingly. This request should be sent after changing an object's flags,
particularly if the new flag settings will change the visual appearance of the
object.

I_CLEAR_FLAGS—Clears the current flag settings for the object. If this
request is sent, data should be a pointer to a variable of type UIF_FLAGS that
contains the flags to be cleared, and objectID should indicate the type of object

508 OpenZinc Application Framework—Programmer's Reference Volume 2

with which the flags are associated. For example, if the programmer wishes to
clear the WOF_FLAGS of an object, objectID should be ID_WINDOW_-
OBJECT. If the SYF_FLAGS are to be cleared, objectID should be ID_-
SYSTEM_BUTTON. This allows the object to process the request at the proper
level. This request only clears those flags that are passed in; it does not simply
clear the entire field.

I_GET_FLAGS—Requests the current flag settings for the object. If this
request is sent, data should be a pointer to a variable of type UIF_FLAGS, and
objectID should indicate the type of object with which the flags are associated.
For example, if the programmer wishes to obtain the WOF_FLAGS of an object,
objectID should be ID_WINDOW_OBJECT. If the SYF_FLAGS are desired,
objectID should be ID_SYSTEM_BUTTON. This allows the object to process
the request at the proper level.

I_GET_NUMBERID_OBJECT—Returns a pointer to an object whose
numberlD matches the value in data, if one exists. This object does a depth-first
search of the objects attached to it, looking for a match of the numberlD. If no
object has a numberlD that matches data, NULL is returned. If this message is
sent, data must be a pointer to a programmer defined NUMBERID.

I_GET_STRINGID_OBJECT—Returns a pointer to an object whose stringID
matches the character string in data, if one exists. This object does a depth-first
search of the objects attached to it looking for a match of the stringID. If no
object has a stringID that matches data, NULL is returned. If this message is
sent, data must be a pointer to a programmer defined string.

I_INITIALIZE_CLASS—Causes the object to initialize any basic information
that does not require a knowledge of its parent or sibling objects. This request
is sent from the constructor of the object.

I_SET_FLAGS—Sets the current flag settings for the object. If this request is
sent, data should be a pointer to a variable of type UIF_FLAGS that contains the
flags to be set, and objectID should indicate the type of object with which the
flags are associated. For example, if the programmer wishes to set the WOF_-
FLAGS of an object, objectID should be ID_WINDOW_OBJECT. If the SYF_-
FLAGS are to be set, objectID should be ID_SYSTEM_BUTTON. This allows
the object to process the request at the proper level. This request only sets those
flags that are passed in; it does not clear any flags that are already set.

All other requests are passed by Information() to UIW_BUTTON::Information()
for processing.

Chapter 24 - UIW_SYSTEM_BUTTON 509

• datain/out is used to provide information to the function or to receive the information
requested, depending on the type of request. In general, this must be space allocated
by the programmer.

• objectIDin is a ZIL_OBJECTID that specifies which type of object the request is
intended for. Because the Information() function is virtual, it is possible for an
object to be able to handle a request at more than one level of its inheritance
hierarchy. objectID removes the ambiguity by specifying which level of an object's
hierarchy should process the request. If no value is provided for objectID, the object
will attempt to interpret the request with the objectID of the most derived class.

Example
#include <ui_win.hpp>

ExampleFunction() {
UIF_FLAGS flags;
systemButton->Information(I_GET_FLAGS, &flags);

}

UIW_SYSTEM_BUTTON::SetDecorations

Syntax
#include <ui_win.hpp>

void SetDecorations(const ZIL_ICHAR *decorationName);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function sets the decorations (i.e., images) to be used by the object. The images for
the object will be loaded and the object's myDecorations member will be updated to point

510 OpenZinc Application Framework—Programmer's Reference Volume 2

to the new ZIL_DECORATION object. By default, the object uses the images identified
in the IMG_DEF.CPP file, which compiles into the library. (If different default images
are desired, simply copy a IMG_<ISO>.CPP file from the OpenZinc\SOURCE\INTL
directory to the \OpenZinc\SOURCE directory, and rename it to IMG_DEF.CPP before
compiling the library.) The images are loaded from the I18N.DAT file, so it must be
shipped with your application.

• decorationNamein is the two-letter ISO country code identifying which images the
object should use.

UIW_SYSTEM_BUTTON::SetLanguage

Syntax
#include <ui_win.hpp>

void SetLanguage(const ZIL_ICHAR *languageName);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows
• Macintosh • OSF/Motif • Curses

Remarks
This function sets the language to be used by the object. The string translations for the
object will be loaded and the object's myLanguage member will be updated to point to
the new ZIL_LANGUAGE object. By default, the object uses the language identified in
the LANG_DEF.CPP file, which compiles into the library. (If a different default
language is desired, simply copy a LANG_<ISO>.CPP file from the OpenZinc\SOURCE\-
INTL directory to the \OpenZinc\SOURCE directory, and rename it to LANG_DEF.CPP
before compiling the library.) The language translations are loaded from the I18N.DAT
file, so it must be shipped with your application.

• languageNamein is the two-letter ISO language code identifying which language the
object should use.

• OS/2
• NEXTSTEP

Chapter 24 - UIW_SYSTEM_BUTTON 511

Storage Members

This section describes those class members that are used for storage purposes.

UIW SYSTEM BUTTON::UIW SYSTEM BUTTON

Syntax
#include <ui_win.hpp>

UIW_SYSTEM_BUTTON(const ZIL_ICHAR *name,
ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object,
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced constructor creates a new UIW_SYSTEM J5UTTON by loading the object
from a data file. Typically, the programmer does not need to use this constructor. If a
system button is stored in a data file it is usually stored as part of a UIW_WINDOW and
will be loaded when the window is loaded.

• namein is the name of the object to be loaded.

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter

512 OpenZinc Application Framework—Programmer's Reference Volume 2

69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT:.objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT:. userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

UIW SYSTEM_BUTTON::Load

Syntax
#include <ui_win.hpp>

virtual void Load(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced function is used to load a UIW_SYSTEM_BUTTON from a persistent
object data file. It is called by the persistent constructor and is typically not used by the
programmer.

Chapter 24 - UIW_SYSTEM_BUTTON 513

• namein is the name of the object to be loaded.

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT:.objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT::userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

UIW SYSTEM BUTTON::New

Syntax
#include <ui_win.hpp>

static UI_WINDOW_OBJECT *New(const ZIL_ICHAR *name,
ZIL_STORAGE_READ_ONLY *file =

ZIL_NULLP(ZIL_STORAGE_READ_ONLY),
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY),
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

514 OpenZinc Application Framework—Programmer's Reference Volume 2

Portability
This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics • Windows
• OSF/Motif • Curses

• OS/2
• NEXTSTEP

Remarks
This advanced function is used to load a persistent object from a data file. This function
is a static class member so that its address can be placed in a table used by the library to
load persistent objects from a data file.

NOTE: The application must first create a display if objects are to be loaded from a data

• namein is the name of the object to be loaded.

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT::objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_ WIN DO W_OBJECT::userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

file.

Chapter 24 - UIW_SYSTEM_BUTTON 515

UIW SYSTEM BUTTON::NewFunction

Syntax
#include <ui_win.hpp>

virtual ZIL_NEW_FUNCTION NewFunction(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks

This virtual function returns a pointer to the object's New() function.

• returnValuein is a pointer to the object's New() function.

UIW_SYSTEM_BUTTON::Store

Syntax
#include <ui_win.hpp>

virtual void Store(const ZIL_ICHAR *name, ZIL_STORAGE *file,
ZIL_STORAGE_OBJECT *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

516 OpenZinc Application Framework—Programmer's Reference Volume 2

Remarks
This advanced function is used to write an object to a data file.

• namein is the name of the object to be stored.

• filein is a pointer to the ZIL_STORAGE where the persistent object will be stored.
For more information on persistent object files, see "Chapter 66—ZIL_STORAGE"
of Programmer's Reference Volume 1.

• object in is a pointer to the ZIL_STORAGE_OBJECT where the persistent object
information will be stored. This must be allocated by the programmer. For more
information on loading persistent objects, see "Chapter 68—ZIL_STORAGE_-
OBJECT" of Programmer's Reference Volume 1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT::objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT: .userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

Chapter 24 - UIW_SYSTEM_BUTTON 517

OpenZinc Application Framework—Programmer's Reference Volume 2 518

CHAPTER 25 - UIW_TABLE

The UIW_TABLE class object is used to create a table of records. The table can be
scrolled both vertically and horizontally. Records in the table can have one or more fields
which may be of different types. A user function can be associated with the table record.
Records are created using the UIW_TABLE_RECORD class. See "Chapter 27—UIW_-
TABLE_RECORD" for more information.

A spreadsheet type object can be created using the UIW_TABLE class by creating a table
with multiple columns. Each cell in the spreadsheet typically consists of one field, but
can be made up of multiple fields.

A header describing the rows and columns can be placed at the top, side, or both top and
side of the table. Headers are created using the UIW_TABLE_HEADER class. See
"Chapter 26—UIW_TABLE_HEADER" for more information.

The figure below shows a graphical representation of a table with a column header, a row
header, and a corner header:

The UIW_TABLE class is declared in UI_WIN.HPP. Its public and protected members
are:

class UIW_TABLE : public UIW_WINDOW {
public:

TBLF_FLAGS tblFlags;

UIW_TABLE(int left, int top, int width, int height, int columns = 1,
int recordSize = 0, int maxRecords = -1,
void *data = ZIL_NULLP(void), int records = 0,
TBLF_FLAGS tblFlags = TBLF_NO_FLAGS,
WOF_FLAGS woFlags = WOF_BORDER);

virtual ~UIW_TABLE(void);

Chapter 25 - UIW_TABLE 519

int DataSet(void *data, int records = 0, int maxRecords = -1);
void *DataGet(int *records = ZIL_NULLP(int));

void InsertRecord(int recordNum, void *data = ZIL_NULLP(void));
void DeleteRecord(int recordNum);
void *GetRecord(int recordNum);

virtual EVENT_TYPE Event(const UI_EVENT &event);
virtual void * Information(INFO_REQUEST request, void *data,

OBJECTID objectID = ID_DEFAULT);

#if defined (ZIL_LOAD)
virtual ZIL_NEW_FUNCTION NewFunction(void) ;
static UI_WINDOW_OBJECT *New(const ZIL_ICHAR *name,

ZIL_STORAGE_READ_ONLY *file = ZIL_NULLP(ZIL_STORAGE_READ_ONLY),
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY) ,
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

UIW_TABLE(const ZIL_ICHAR *name,
ZIL_STORAGE_READ_ONLY *file = ZIL_NULLP(ZIL_STORAGE_READ_ONLY),
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY) ,
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM) ,
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

virtual void Load(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

#endif
#if defined (ZIL_STORE)

virtual void Store(const ZIL_ICHAR *name, ZIL_STORAGE *file,
ZIL_STORAGE_OBJECT *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

#endif

protected:
UI_WINDOW_OBJECT *columnHeader;
UI_WINDOW_OBJECT *rowHeader;
UI_WINDOW_OBJECT *tableRecord;
UI_WINDOW_OBJECT *virtualRecord;
void *data;
int columns;
int currentRecord;
int maxRecords;
int records;
int recordSize;
int topRecord;

virtual EVENT_TYPE Drawltem(const UI_EVENT &event, EVENT_TYPE ccode);

void DrawRecord(int recordNum);
void SetCurrent(int recordNum);

} ;

General Members

This section describes those members that are used for general purposes.

520 OpenZinc Application Framework—Programmer's Reference Volume 2

• _className contains a string identifying the class. The string is always the same
name as the class, is always in English, and never changes. For example, for the
UIW_TABLE class, _className is "UIW_TABLE."

• tblFlags are flags that define the operation of the UIW_TABLE class. A full
description of the table flags is given in the UIW_TABLE constructor.

• columnHeader is a pointer to the UIW_TABLE_HEADER object that is placed at the
top of the table.

• rowHeader is a pointer to the UIW_TABLE_HEADER object that is placed at the
side of the table.

• tableRecord is a pointer to the UIW_TABLE_RECORD object that manages the
fields of each table record. tableRecord is manipulated so that it is always used for
the current record in the table, thus allowing the end-user to move from field to field
in the record and enter data, if desired. tableRecord is part of the table's list of
objects.

• virtualRecord is a copy of tableRecord. virtualRecord is used to draw those records
that are not the current record. To minimize memory requirements, only one UIW_-
TABLE_RECORD is added to the table. That table record is maintained by
tableRecord. virtualRecord's position is repeatedly modified so that it can be used
to draw all the records other than tableRecord. virtualRecord is never added to the
table's list of objects.

• data is a pointer to the data that is displayed in the table fields.

• columns is how many columns are displayed by the table. Columns must be 1, the
default, for a table. If columns is greater than 1, then a spreadsheet is created. Each
field in a spreadsheet must be the same type object.

• currentRecord is the record number of the current record.

• maxRecords is how many records can be added to the table. If maxRecords is -1, the
default, then there is no maximum number of records associated with the table. -1
should be specified only if the table has the WOF_NO_ALLOCATE_DATA flag set.

• records is the number of records whose data is present in the data parameter.

• recordSize is the size of the data used by each record.

Chapter 25 - UIW_TABLE 521

• topRecord is the record number of the top record currently visible in the table.

UIW_TABLE::UIW_TABLE

Syntax
#include <ui_win.hpp>

UIW_TABLE(int left, int top, int width, int height, int columns = 1,
int recordSize = 0, int maxRecords = -1, void *data = ZIL_NULLP(void),
int records = 0, TBLF_FLAGS tblFlags = TBLF_NO_FLAGS,
WOF_FLAGS woFlags = WOF_B ORDER);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This constructor creates a new UIW_TABLE class object.

• le f t i n and topin is the starting position of the table. Typically, these values are in cell
coordinates. If the WOF_MINICELL flag is set, however, these values will be
interpreted as minicell values.

• widthin is the width of the table. Typically, this value is in cell coordinates. If the
WOF_MINICELL flag is set, however, this value will be interpreted as a minicell
value.

• heightin is the height of the table. Typically, this value is in cell coordinates. If the
WOF_MINICELL flag is set, however, this value will be interpreted as a minicell
value.

• columnsin is how many columns of records should be displayed in the table.

• recordSizein is the size of each record's data.

522 OpenZinc Application Framework—Programmer's Reference Volume 2

• maxRecordsin is the maximum number of records that can be added to the table. If
maxRecords is -1, the default, then there is no maximum number of records
associated with the table. -1 should be specified only if the table has the WOF_NO_-
ALLOCATE_DATA flag set.

• datain is a pointer to the data for the records to be displayed in the table. This
memory will be copied by the UIW_TABLE object unless the WOF_NO_-
ALLOCATE_DATA flag is set. If the WOF_NO_ALLOCATE_DATA flag is set,
then data must not be deleted until the table is deleted.

• recordsin indicates how many records are being used initially.

• tblFlagsin are flags that determine the general operation of the table. The following
flags (declared in UI_WIN.HPP) affect the operation of a UIW_TABLE class object:

TBLF_GRID—Causes vertical and horizontal lines to be displayed between
records.

TBLF_NO_FLAGS—Does not associate any special flags with the UIW_-
TABLE class object. This flag should not be used in conjunction with any other
TBLF flags. This flag is set by default in the constructor.

• woFlagsin are flags (common to all window objects) that determine the general
operation of the table. The following flags (declared in UI_WIN.HPP) affect the
operation of a UIW_TABLE class object:

WOF_BORDER—Draws a border around the object. The graphical border's
appearance will depend on the operating system used, and, if in DOS, on the
graphics style being used. In text mode, a border may or may not be drawn,
depending on the text style being used. See "Appendix A—Support
Definitions" in this manual for information on changing DOS graphics mode
styles and text mode styles. This flag is set by default in the constructor.

WOF_MINICELL—Causes the position and size values that were passed into
the constructor to be interpreted as minicells. A minicell is a fraction the size
of a normal cell. Greater precision in object placement is achieved by specifying
an object's position in minicell coordinates. A minicell is 1/1 Oth the size of a
normal cell by default.

WOF_NO_ALLOCATE_DATA—Prevents the object from allocating a buffer
to store the data. If this flag is set, the programmer is responsible for allocating

Chapter 25 - UIW_TABLE 523

the memory for the data. The programmer is also responsible for deallocating
that memory when it is no longer needed.

WOF_NO_FLAGS—Does not associate any special window flags with the
object. This flag should not be used in conjunction with any other WOF flags.

WOF_NON_FIELD_REGION—Causes the object to ignore its position and
size parameters and use the remaining available space in its parent object.

UIW_TABLE::UIW_TABLE

Syntax

include <ui_win.hpp>

virtual ~UIW_TABLE(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This virtual destructor destroys the UIW_TABLE class object. All objects attached to the
table are also destroyed.

UIW_TABLE::DataGet

Syntax
#include <ui_win.hpp>

void *DataGet(int *records = ZIL_NULLP(int));

524 OpenZinc Application Framework—Programmer's Reference Volume 2

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks

This function gets a pointer to the data associated with the table.

• returnValueout is a pointer to the data block associated with the table.

• recordsin indicates how many records are present.

UIW_TABLE::DataSet

Syntax
#include <ui_win.hpp>

int DataSet(void *data, int records = 0, int maxRecords = -1);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows
• Macintosh • OSF/Motif • Curses

Remarks
This function sets the data associated with the table.

• returnValueout indicates if the data was successfully set. returnValue is non-zero on
success. Otherwise, it is zero.

• datain is a pointer to the data for the records to be displayed in the table. This
memory will be copied by the UIW_TABLE object unless the WOF_NO_-

• OS/2
• NEXTSTEP

Chapter 25 - UIW_TABLE 525

ALLOCATE_DATA flag is set. If the WOF_NO_ALLOCATE_DATA flag is set,
then data must not be deleted until the table is deleted.

• recordsin indicates how many records are being used.

• maxRecordsin is the maximum number of records that can be added to the table.

UIW_TABLE::DeleteRecord

Syntax
#include <ui_win.hpp>

void DeleteRecord(int recordNum);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function deletes a record. The table should be redisplayed after deleting a record.

• recordNumin is the number of the record to be deleted. Records are zero-indexed, so
the first record is record zero.

UIW_TABLE::Drawltem

Syntax
#include <ui_win.hpp>

virtual EVENT_TYPE DrawItem(const UI_EVENT &event, EVENT_TYPE ccode);

526 OpenZinc Application Framework—Programmer's Reference Volume 2

Portability
This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics • Windows
• OSF/Motif • Curses

• OS/2
• NEXTSTEP

Remarks
This virtual advanced function is used to draw the object. If the WOS_OWNERDRAW
status is set for the object, this function will be called when drawing the table. This
allows the programmer to derive a new class from UIW_TABLE and handle the drawing
of the table, if desired. For the UIW_TABLE object, the WOS_OWNERDRAW status
is always set.

• returnValueout is a response based on the success of the function call. If the object
is drawn the function returns a non-zero value. If the object is not drawn, 0 is

• eventin contains the run-time message that caused the object to be redrawn.
event.region contains the region in need of updating. The following logical events
may be sent to the Drawltem() function:

S_CURRENT, S_NON_CURRENT, S_DISPLAY_ACTIYE and S_DIS-
PLAY_INACTIVE—Messages that cause the object to be redrawn.

WM_DRAWITEM—A message that causes the object to be redrawn. This
message is specific to Windows and OS/2.

Expose—A message that causes the object to be redrawn. This message is
specific to Motif.

• ccodein contains the logical interpretation of event.

returned.

UIW TABLE::DrawRecord

Syntax
#include <ui_win.hpp>

void DrawRecord(int recordNum);

Chapter 25 - UIW_TABLE 527

Portability
This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics • Windows
• OSF/Motif • Curses

• OS/2
• NEXTSTEP

Remarks
This function draws a record. Typically an S_SET_DATA event is sent to the record
before it is drawn. The S_SET_DATA event can be handled by a derived UIW_-
TABLE_RECORD object or the table object's user function will be called with a ccode
of S_SET_DATA. This gives the table record the opportunity to update the data in its
fields.

• recordNumin is the number of the record to be drawn.

UIW_TABLE::Event

Syntax
#include <ui_win.hpp>

virtual EVENT_TYPE Event(const UI_EVENT 8cevent);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

This function processes run-time messages sent to the table object. It is declared virtual
so that any derived table class can override its default operation.

• returnValueout indicates how event was processed. If the event is processed
successfully, the function returns the logical type of event that was interpreted from
event. If the event could not be processed, S_UNKNOWN is returned.

Remarks

528 OpenZinc Application Framework—Programmer's Reference Volume 2

• eventin contains a run-time message for the table object. The type of operation
performed depends on the interpretation of the event. The following logical events
are processed by Event():

L_BEGIN_SELECT—Indicates that the end-user began the selection of the
object by pressing the mouse button down while on the object. The table will
route this message to the object that the mouse event occurred on.

L_DOWN—Moves the focus down one object. This message is interpreted from
a keyboard event.

L_LEFT—Moves the focus left one object. This message is interpreted from
a keyboard event.

L_RIGHT—Moves the focus right one object. This message is interpreted from
a keyboard event.

L_UP—Moves the focus up one object. This message is interpreted from a
keyboard event.

S_CHANGED—Causes the object to recalculate its position and size. When a
window is moved or sized, the objects on the window will need to recalculate
their positions. This message informs an object that it has changed and that it
should update itself.

S_CREATE—Causes the object to create itself. The object will calculate its
position and size and, if necessary, will register itself with the operating system.
This message is sent by the Window Manager when a window is attached to it
to cause the window and all the objects attached to the window to determine
their positions.

S_HSCROLL—Causes the table to scroll horizontally, event.scrolldelta
indicates how far to scroll.

S_INITIALIZE—Causes the object to initialize any necessary information that
may require a knowledge of its parent or siblings. When a window is added to
the Window Manager, the Window Manager sends this message to cause the
window and all the objects attached to the window to initialize themselves.

S_VSCROLL—Causes the table to scroll vertically, event.scrolldelta indicates
how far to scroll.

Chapter 25 - UIW_TABLE 529

All other events are passed by Event() to UIW_WINDOW::Event() for processing.

UIW_TABLE::GetRecord

Syntax
#include <ui_win.hpp>

void *GetRecord(int recordNum);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function gets the data for the record specified by recordNum.

• returnValueout is a pointer to the data associated with the record specified by
recordNum.

• recordNumin is the number of the record whose data is to be returned.

UIW_TABLE::Information

Syntax
#include <ui_win.hpp>

virtual void *Information(ZIL_INFO_REQUEST request, void *data,
ZIL_OBJECTID objectID = ID_DEFAULT);

530 OpenZinc Application Framework—Programmer's Reference Volume 2

Portability
This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics • Windows
• OSF/Motif • Curses

• OS/2
• NEXTSTEP

Remarks
This function allows OpenZinc Application Framework objects and programmer functions to
get or modify specified information about an object.

• returnValueout is a pointer to the return data that was requested. The type of the
return data depends on the request. If the request did not require the return of
information, this value is NULL.

• requestin is a request to get or set information associated with the object. The
following requests (defined in UI_WIN.HPP) are recognized by the table:

I_CHANGED_FLAGS—Informs the object that the programmer has changed
some flags associated with the object and that the object should update itself
accordingly. This request should be sent after changing an object's flags,
particularly if the new flag settings will change the visual appearance of the
object.

I_CLEAR_FLAGS—Clears the current flag settings for the object. If this
request is sent, data should be a pointer to a variable of type UIF_FLAGS that
contains the flags to be cleared, and objectID should indicate the type of object
with which the flags are associated. For example, if the programmer wishes to
clear the WOF_FLAGS of an object, objectID should be ID_WINDOW_-
OBJECT. If the TBLF_FLAGS are to be cleared, objectID should be ID_-
TABLE. This allows the object to process the request at the proper level. This
request only clears those flags that are passed in; it does not simply clear the
entire field.

I_GET_COLUMNS—Requests the number of columns in the table. If this
request is sent, data should be a pointer to a variable of type int.

I_GET_CORNER_HEIGHT—Requests the height to be used for the table's
corner header. If this request is sent, data should be a pointer to a variable of
type int.

Chapter 25 - UIW__TABLE 531

I_GET_CORNER_WIDTH—Requests the width to be used for the table's
corner header. If this request is sent, data should be a pointer to a variable of
type int.

I_GET_FLAGS—Requests the current flag settings, for the object. If this
request is sent, data should be a pointer to a variable of type UIF_FLAGS, and
objectID should indicate the type of object with which the flags are associated.
For example, if the programmer wishes to obtain the WOF_FLAGS of an object,
objectID should be ID_WINDOW_OBJECT. If the TBLF_FLAGS are desired,
objectID should be ID_TABLE. This allows the object to process the request at
the proper level.

I_GET_HEIGHT—Requests the height of the table. If this request is sent, data
should be a pointer to a variable of type int.

I_GET_RECORDS—Requests the number of records in the table. If this
request is sent, data should be a pointer to a variable of type int.

I_GET_RECORD_HEIGHT—Requests the height of records in the table. If
this request is sent, data should be a pointer to a variable of type int.

I_GET_RECORD_WIDTH—Requests the width of records in the table. If this
request is sent, data should be a pointer to a variable of type int.

I_GET_WIDTH—Requests the width of the table. If this request is sent, data
should be a pointer to a variable of type int.

I_INITIALIZE_CLASS—Causes the object to initialize any basic information
that does not require a knowledge of its parent or sibling objects. This request
is sent from the constructor of the object.

I_SET_COL_HEADER—Sets the columnHeader member to point to the object
passed in data. This request generally should not be used by the programmer.

I_SET_FLAGS—Sets the current flag settings for the object. If this request is
sent, data should be a pointer to a variable of type UIF_FLAGS that contains the
flags to be set, and objectID should indicate the type of object with which the
flags are associated. For example, if the programmer wishes to set the WOF_-
FLAGS of an object, objectID should be ID_WINDOW_OBJECT. If the
TBLF_FLAGS are to be set, objectID should be ID_TABLE. This allows the
object to process the request at the proper level. This request only sets those
flags that are passed in; it does not clear any flags that are already set.

532 OpenZinc Application Framework—Programmer's Reference Volume 2

I_SET_ROW_HEADER—Sets the rowHeader member to point to the object
passed in data. This request generally should not be used by the programmer.

I_SET_TABLE_RECORD—Sets the tableRecord member to point to the object
passed in data. This request generally should not be used by the programmer.

I_SET_VIRTUAL_RECORD—Sets the virtualRecord member to point to the
object passed in data. This request generally should not be used by the
programmer.

All other requests are passed by Information() to UIW_WINDOW::Information()
for processing.

• datain/out is used to provide information to the function or to receive the information
requested, depending on the type of request. In general, this must be space allocated
by the programmer.

• objectIDin is a ZIL_OBJECTID that specifies which type of object the request is
intended for. Because the Information() function is virtual, it is possible for an
object to be able to handle a request at more than one level of its inheritance
hierarchy. objectID removes the ambiguity by specifying which level of an object's
hierarchy should process the request. If no value is provided for objectID, the object
will attempt to interpret the request with the objectID of the actual object type.

UIW TABLE::lnsertRecord

Syntax
#include <ui_win.hpp>

void InsertRecord(int recordNum, void *data = ZIL_NULLP(void));

Portability
This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics • Windows
• OSF/Motif • Curses

• OS/2
• NEXTSTEP

Chapter 25 - UIW_TABLE 533

Remarks
This function inserts a record into the table at the position indicated by recordNum. All
records after recordNum will be shifted down one record number. The table should be
redisplayed after inserting a new record.

• recordNumin is the position at which the record should be inserted.

• datain is the data for the new record.

UIW TABLE::SetCurrent

Syntax
#include <ui_win.hpp>

void SetCurrent(int recordNum);

Portability
This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics • Windows
• OSF/Motif • Curses

• OS/2
• NEXTSTEP

Remarks
This function sets which record is current.

recordNum.n is the record that is to be made current.
in

Storage Members

This section describes those class members that are used for storage purposes.

534 OpenZinc Application Framework—Programmer's Reference Volume 2

UIW_TABLE::UIW_TABLE

Syntax
#include <ui_win.hpp>

UIW_TABLE(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object,
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced constructor creates a new UIW_TABLE by loading the object from a data
file. Typically, the programmer does not need to use this constructor. If a table is stored
in a data file it is usually stored as part of a UIW_WINDOW and will be loaded when
the window is loaded.

• namein is the name of the object to be loaded.

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT:.objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,

Chapter 25 - UIW_TABLE 535

the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT:. userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

UIW_TABLE::Load

Syntax
#include <ui_win.hpp>

virtual void Load(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced function is used to load a UIW J A B L E from a persistent object data file.
It is called by the persistent constructor and is typically not used by the programmer.

• namein is the name of the object to be loaded.

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

• objects is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the

536 OpenZinc Application Framework—Programmer's Reference Volume 2

programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT::objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT::userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

UIW TABLE::New

Syntax
#include <ui_win.hpp>

static UI_WINDOW_OBJECT *New(const ZIL_ICHAR *name,
ZIL_STORAGE_READ_ONLY *file =

ZIL_NULLP(ZIL_STORAGE_READ_ONLY),
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY),
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows
• Macintosh • OSF/Motif • Curses

• OS/2
• NEXTSTEP

Chapter 25 - UIW_TABLE 537

Remarks
This advanced function is used to load a persistent object from a data file. This function
is a static class member so that its address can be placed in a table used by the library to
load persistent objects from a data file.

NOTE: The application must first create a display if objects are to be loaded from a data
file.

• namein is the name of the object to be loaded.

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT:-.objectTable in "Chapter 43—UI_WIN-
DO W_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT:. userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

UIW_TABLE::NewFunction

Syntax
#include <ui_win.hpp>

virtual ZIL_NEW_FUNCTION NewFunction(void);

538 OpenZinc Application Framework—Programmer's Reference Volume 2

Portability
This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics • Windows
• OSF/Motif • Curses

• OS/2
• NEXTSTEP

Remarks
This virtual function returns a pointer to the object's New() function.

returnValueout is a pointer to the object's New() function.

UIW TABLE::Store

Syntax
#include <ui_win.hpp>

virtual void Store(const ZIL_ICHAR *name, ZIL_STORAGE *file,
ZIL_STORAGE_OBJECT *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced function is used to write an object to a data file.

• namein is the name of the object to be stored.

• filein is a pointer to the ZIL_STORAGE where the persistent object will be stored.
For more information on persistent object files, see "Chapter 66—ZIL_STORAGE"
of Programmer's Reference Volume 1.

Chapter 25 - UIW_TABLE 539

• objectin is a pointer to the ZIL_STORAGE_OBJECT where the persistent object
information will be stored. This must be allocated by the programmer. For more
information on loading persistent objects, see "Chapter 68—ZIL_STORAGE_-
OBJECT" of Programmer's Reference Volume 1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT::objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT::userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

540 OpenZinc Application Framework—Programmer's Reference Volume 2

CHAPTER 26 - UIW TABLE HEADER

The UIW_TABLE_HEADER class object is used to provide information about the data
contained in a table column or row. A column header appears at the top of a table, a row
header appears down the side of the table, and a corner header appears in the corner
between a column and row header. The UIW_TABLE_HEADER class is derived from
UIW_TABLE, so its operation is very similar to the UIW_TABLE class.

A UIW_TABLE_RECORD object is added to the table header to define the data to be
displayed for each column or row field. When the table header needs to be updated it
sends S_SET_DATA events to the table record. The event. rawCode is the record number
and event.data is a pointer to the data for the header's record.

The UIW_TABLE_HEADER class is declared in UI_WIN.HPP. Its public and protected
members are:

class UIW_TABLE_HEADER : public UIW_TABLE
{
public:

THF_FLAGS thFlags;

UIW_TABLE_HEADER(THF_FLAGS thFlags, int recordSize = 0,
int maxRecords = -1, void *data = ZIL_NULLP(void),
WOF_FLAGS woFlags = WOF_BORDER);

virtual ~UIW_TABLE_HEADER(void);

virtual EVENT_TYPE Event (const UI_EVENT Seventh-
virtual void *Information(INFO_REQUEST request, void *data,

OBJECTID objectID = ID_DEFAULT);

#if defined (ZIL_LOAD)
virtual ZIL_NEW_FUNCTION NewFunction(void);
static UI_WINDOW_OBJECT *New(const ZIL_ICHAR *name,

ZIL_STORAGE_READ_ONLY *file = ZIL_NULLP(ZIL_STORAGE_READ_ONLY),
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY) ,
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM) ,
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

UIW_TABLE_HEADER(const ZIL_ICHAR *name,
ZIL_STORAGE_READ_ONLY *file = ZIL_NULLP(ZIL_STORAGE_READ_ONLY),
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY),
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

virtual void Load(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

#endif

#if defined(ZIL_STORE)
virtual void Store(const ZIL_ICHAR *name, ZIL_STORAGE *file,

ZIL_STORAGE_OBJECT *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

#endif

Chapter 26 - UIW_TABLE_HEADER 541

protected:
virtual EVENT_TYPE Drawltem(const UI_EVENT &event, EVENT_TYPE ccode);

} ;

General Members

This section describes those members that are used for general purposes.

• _className contains a string identifying the class. The string is always the same
name as the class, is always in English, and never changes. For example, for the
UIW_TABLE_HEADER class, _className is "UIW_TABLE_HEADER."

• thFlags are flags that define the operation of the UIW_TABLE_HEADER class. A
full description of the table header flags is given in the UIW_TABLE_HEADER
constructor.

UIW_TABLE_HEADER::UIW_TABLE_HEADER

Syntax
#include <ui_win.hpp>

UIW_TABLE_HEADER(THF_FLAGS thFlags, int recordSize = 0,
int maxRecords = -1, void *data = ZIL_NULLP(void),
WOF_FLAGS woFlags = WOF_B ORDER);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This constructor creates a new UIW_TABLE_HEADER class object.

542 OpenZinc Application Framework—Programmer's Reference Volume 2

• thFlagsin are flags that determine the general operation of the table header. The
following flags (declared in UI_WIN.HPP) affect the operation of a UIW_TABLE_-
HEADER class object:

THF_COLUMN_HEADER—Causes the header to be created as a column
header.

THF_CORNER_HEADER—Causes the header to be created as a corner
header.

THF_GRID—Causes vertical and horizontal lines to be displayed between
records in the header.

THF_NO_FLAGS—Does not associate any special flags with the UIW_-
TABLE_HEADER class object. This flag should not be used in conjunction
with any other THF flags.

THF_ROW_HEADER—Causes the header to be created as a row header.

• recordSizein is the size of each record's data.

• maxRecordsin is the maximum number of records that can be added to the table.

• datain is a pointer to the data for the records to be displayed in the table. This
memory will be copied by the UIW_TABLE_HEADER object unless the WOF_NO_-
ALLOCATE_DATA flag is set. If the WOF_NO_ALLOCATE_DATA flag is set,
then data must not be deleted until the table header is deleted.

• woFlagsin are flags (common to all window objects) that determine the general
operation of the table header. The following flags (declared in UI_WIN.HPP) affect
the operation of a UIW_TABLE_HEADER class object:

WOF_BORDER—Draws a border around the object. The graphical border's
appearance will depend on the operating system used, and, if in DOS, on the
graphics style being used. In text mode, a border may or may not be drawn,
depending on the text style being used. See "Appendix A—Support
Definitions" in this manual for information on changing DOS graphics mode
styles and text mode styles. This flag is set by default in the constructor.

WOF_NO_ALLOCATE_DATA—Prevents the object from allocating a buffer
to store the data. If this flag is set, the programmer is responsible for allocating

Chapter 26 - UIW_TABLE_HEADER 543

the memory for the data. The programmer is also responsible for deallocating
that memory when it is no longer needed.

WOF_NO_FLAGS—Does not associate any special window flags with the
object. This flag should not be used in conjunction with any other WOF flags.

UIW_TABLE_HEADER::~UIW_TABLE_HEADER

Syntax
#include <ui_win.hpp>

virtual ~UIW_TABLE_HEADER(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This virtual destructor destroys the UIW_TABLE_HEADER class object. All objects
attached to the table header are also destroyed.

UIW_TABLE_HEADER::Drawltem

Syntax
#include <ui_win.hpp>

virtual EVENT_TYPE DrawItem(const UI_EVENT &event, EVENT_TYPE ccode);

544 OpenZinc Application Framework—Programmer's Reference Volume 2

Portability
This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics • Windows
• OSF/Motif • Curses

• OS/2
• NEXTSTEP

Remarks
This virtual advanced function is used to draw the object. If the WOS_OWNERDRAW
status is set for the object, this function will be called when drawing the table header.
This allows the programmer to derive a new class from UIW_TABLE_HEADER and
handle the drawing of the table header, if desired. For the UIW_TABLE_HEADER
object, the WOS_OWNERDRAW status is always set.

• returnValueout is a response based on the success of the function call. If the object
is drawn the function returns a non-zero value. If the object is not drawn, 0 is

• eventin contains the run-time message that caused the object to be redrawn.
event.region contains the region in need of updating. The following logical events
may be sent to the Drawltem() function:

S_CURRENT, S_NON_CURRENT, S_DISPLAY_ACTIVE and S_DIS-
PLAY_INACTIVE—Messages that cause the object to be redrawn.

WM_DRAWITEM—A message that causes the object to be redrawn. This
message is specific to Windows and OS/2.

Expose—A message that causes the object to be redrawn. This message is
specific to Motif.

• ccodein contains the logical interpretation of event.

returned.

UIW TABLE HEADER::Event

Syntax
#include <ui_win.hpp>

virtual EVENT_TYPE Event(const UI_EVENT &event);

Chapter 26 - UIW_TABLE_HEADER 545

Portability
This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics • Windows
• OSF/Motif • Curses

• OS/2
• NEXTSTEP

Remarks
This function processes run-time messages sent to the table header object. It is declared
virtual so that any derived table header class can override its default operation.

• returnValueout indicates how event was processed. If the event is processed
successfully, the function returns the logical type of event that was interpreted from
event. If the event could not be processed, S_UNKNOWN is returned.

• eventin contains a run-time message for the table header object. The type of operation
performed depends on the interpretation of the event. The following logical events
are processed by Event():

S_CHANGED—Causes the object to recalculate its position and size. When a
window is moved or sized, the objects on the window will need to recalculate
their positions. This message informs an object that it has changed and that it
should update itself.

S_CREATE—Causes the object to create itself. The object will calculate its
position and size and, if necessary, will register itself with the operating system.
This message is sent by the Window Manager when a window is attached to it
to cause the window and all the objects attached to the window to determine
their positions.

S_INITIALIZE—Causes the object to initialize any necessary information that
may require a knowledge of its parent or siblings. When a window is added to
the Window Manager, the Window Manager sends this message to cause the
window and all the objects attached to the window to initialize themselves.

All other events are passed by Event() to UIW_TABLE::Event() for processing.

546 OpenZinc Application Framework—Programmer's Reference Volume 2

UIW_TABLE_HEADER::Information

Syntax
#include <ui_win.hpp>

virtual void *Information(ZIL_INFO_REQUEST request, void *data,
ZIL_OBJECTID objectID = ID_DEFAULT);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function allows OpenZinc Application Framework objects and programmer functions to
get or modify specified information about an object.

• returnValueout is a pointer to the return data that was requested. The type of the
return data depends on the request. If the request did not require the return of
information, this value is NULL.

• requestin is a request to get or set information associated with the object. The
following requests (defined in UI_WIN.HPP) are recognized by the table header:

I_CLEAR_FLAGS—Clears the current flag settings for the object. If this
request is sent, data should be a pointer to a variable of type UIF_FLAGS that
contains the flags to be cleared, and objectID should indicate the type of object
with which the flags are associated. For example, if the programmer wishes to
clear the WOF_FLAGS of an object, objectID should be ID_WINDOW_-
OBJECT. If the THF_FLAGS are to be cleared, objectID should be ID_-
TABLE_HEADER. This allows the object to process the request at the proper
level. This request only clears those flags that are passed in; it does not simply
clear the entire field.

I_GET_FLAGS—Requests the current flag settings for the object. If this
request is sent, data should be a pointer to a variable of type UIF_FLAGS, and
objectID should indicate the type of object with which the flags are associated.

Chapter 26 - UIW_TABLE_HEADER 547

For example, if the programmer wishes to obtain the WOF_FLAGS of an object,
objectID should be ID_WINDOW_OBJECT. If the THF_FLAGS are desired,
objectID should be ID_TABLE_HEADER. This allows the object to process the
request at the proper level.

I_INITIALIZE_CLASS—Causes the object to initialize any basic information
that does not require a knowledge of its parent or sibling objects. This request
is sent from the constructor of the object.

I_SET_FLAGS—Sets the current flag settings for the object. If this request is
sent, data should be a pointer to a variable of type UIF_FLAGS that contains the
flags to be set, and objectID should indicate the type of object with which the
flags are associated. For example, if the programmer wishes to set the WOF_-
FLAGS of an object, objectID should be ID_WINDOW_OBJECT. If the THF__-
FLAGS are to be set, objectID should be ID_TABLE_HEADER. This allows
the object to process the request at the proper level. This request only sets those
flags that are passed in; it does not clear any flags that are already set.

All other requests are passed by Information() to UIW_TABLE::Information()
for processing.

• datain/ovt is used to provide information to the function or to receive the information
requested, depending on the type of request. In general, this must be space allocated
by the programmer.

• objectIDin is a ZIL_OBJECTID that specifies which type of object the request is
intended for. Because the Information() function is virtual, it is possible for an
object to be able to handle a request at more than one level of its inheritance
hierarchy. objectID removes the ambiguity by specifying which level of an object's
hierarchy should process the request. If no value is provided for objectID, the object
will attempt to interpret the request with the objectID of the actual object type.

Storage Members

This section describes those class members that are used for storage purposes.

548 OpenZinc Application Framework—Programmer's Reference Volume 2

UIW_TABLE_HEADER::UIW_TABLE_HEADER

Syntax
#include <ui_win.hpp>

UIW_TABLE_HEADER(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object,
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced constructor creates a new UIW_TABLE_HEADER by loading the object
from a data file. Typically, the programmer does not need to use this constructor. If a
table header is stored in a data file it is usually stored as part of a UIW_TABLE and will
be loaded when the table is loaded.

• namein is the name of the object to be loaded.

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT:-.objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,

Chapter 26 - UIW_TABLE_HEADER 549

the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT:. userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

UIW_TABLE_HEADER::Load

Syntax
#include <ui_win.hpp>

virtual void Load(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced function is used to load a UIW_TABLE_HEADER from a persistent object
data file. It is called by the persistent constructor and is typically not used by the
programmer.

• namein is the name of the object to be loaded.

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

550 OpenZinc Application Framework—Programmer's Reference Volume 2

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
J.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT::objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT:. userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

UIW_TABLE_HEADER::New

Syntax
#include <ui_win.hpp>

static UI_WINDOW_OBJECT *New(const ZIL_ICHAR *name,
ZIL_STORAGE_READ_ONLY *file =

ZIL_NULLP(ZIL_STORAGE_READ_ONLY),
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY),
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Chapter 26 - UIW_TABLE_HEADER 551

Remarks
This advanced function is used to load a persistent object from a data file. This function
is a static class member so that its address can be placed in a table used by the library to
load persistent objects from a data file.

NOTE: The application must first create a display if objects are to be loaded from a data
file.

• namein is the name of the object to be loaded.

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT:.objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT:. userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

UIW_TABLE HEADER::NewFunction

Syntax
#include <ui_win.hpp>

virtual ZIL_NEW_FUNCTION NewFunction(void);

552 OpenZinc Application Framework—Programmer's Reference Volume 2

Portability
This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics • Windows
• OSF/Motif • Curses

• OS/2
• NEXTSTEP

Remarks
This virtual function returns a pointer to the object's New() function.

returnValueout is a pointer to the object's New() function.

UIW_TABLE_HEADER::Store

Syntax
#include <ui_win.hpp>

virtual void Store(const ZIL_ICHAR *name, ZIL_STORAGE *file,
ZIL_STORAGE_OBJECT *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced function is used to write an object to a data file.

• namein is the name of the object to be stored.

• filein is a pointer to the ZIL_STORAGE where the persistent object will be stored.
For more information on persistent object files, see "Chapter 66—ZIL_STORAGE"
of Programmer's Reference Volume 1.

Chapter 26 - UIW_TABLE_HEADER 553

• objectin is a pointer to the ZIL_STORAGE_OBJECT where the persistent object
information will be stored. This must be allocated by the programmer. For more
information on loading persistent objects, see "Chapter 68—ZIL_STORAGE_-
OBJECT" of Programmer's Reference Volume 1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT: .objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT:. userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

554 OpenZinc Application Framework—Programmer's Reference Volume 2

CHAPTER 27 - UIW_TABLE_RECORD

The UIW_TABLE_RECORD class object is used to define the fields for a record in the
UIW_TABLE object. The UIW_TABLE_RECORD class is for use with the UIW_-
TABLE object only. Objects are added to the table record just like they would be added
to a window. The table record is then added to the table. To reduce memory
requirements, only one UIW_TABLE_RECORD object should be added to a table. The
table record's position and data are manipulated so that the table record is always being
used to display the current record. This way, the end-user can interact with the fields of
the record. All other visible records are only images on the screen, drawn using a copy
of the table record and the data provided to the table.

Data is associated with the fields in the table record at run-time. The table record will
be sent an S_SET_DATA event from the UIW_TABLE. The event. rawCode field will
contain the record number and event.data will contain a pointer to the record's data. A
derived table record can process the S_SET_DATA event in its Event() function. If the
UIW_TABLE_RECORD class processes the S_SET_DATA event (i.e., there is not a
derived instance of UIW_TABLE_RECORD) then it will call the table record's user
function with the above data. The application must place the data in the record fields as
required.

The UIW_TABLE_RECORD class is declared in UI_WIN.HPP. Its public and protected
members are:

class UIW_TABLE_RECORD : public UIW_WINDOW {
public:

UIW_TABLE_RECORD(int width, int height,
ZIL_USER_FUNCTION userFunction = ZIL_NULLF(ZIL_USER_FUNCTION),
WOF_FLAGS woFlags = WOF_NO_FLAGS);

virtual EVENT_TYPE Event (const UI_EVENT Seventh-
virtual void *Information(INFO_REQUEST request, void *data,

OBJECTID objectID = ID_DEFAULT);
virtual void RegionMax(UI._WINDOW_OBJECT *object);

#if defined (ZIL_LOAD)
virtual ZIL_NEW_FUNCTION NewFunction(void);
static UI_WINDOW_OBJECT *New(const ZIL_ICHAR *name,

ZIL_STORAGE_READ_ONLY *file = ZIL_NULLP(ZIL_STORAGE_READ_ONLY),
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY),
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM) ,
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

UIW_TABLE_RECORD(const ZIL_ICHAR *name,
ZIL_STORAGE_READ_ONLY *file = ZIL_NULLP(ZIL_STORAGE_READ_ONLY),
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULL P(ZIL_STORAGE_OBJECT_READ_ONLY) ,
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM) ,
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

virtual void Load(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object, UI_ITEM *objectTable,

Chapter 27 - UIW_ TABLE_RECORD 555

UI_ITEM *userTable);
#endif
#if defined (ZIL_STORE)

virtual void Store(const ZIL_ICHAR *name, ZIL_STORAGE *file,
ZIL_STORAGE_OBJECT *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

#endif

protected:
void *data;
int recordNum;
int virtualRecord;

virtual EVENT_TYPE Drawltem(const UI_EVENT &event, EVENT_TYPE ccode);

UIW_TABLE_RECORD *VirtualRecord(void);
} ;

General Members

This section describes those members that are used for general purposes.

• _className contains a string identifying the class. The string is always the same
name as the class, is always in English, and never changes. For example, for the
UIW_TABLE_RECORD class, _className is "UIW_TABLE_RECORD."

• data is a pointer to the data associated with the table record.

• recordNum is the table record number, record numbers are zero-based, so the first
record is record zero.

• virtualRecord indicates if the table record is the table's virtual record. If
virtualRecord is TRUE, the record is the virtual record. Otherwise, it is not.

UIW TABLE_RECORD::UIW TABLE RECORD

Syntax
#include <ui_win.hpp>

UIW_TABLE_RECORD(int width, int height,
ZIL_USER_FUNCTION userFunction = ZIL_NULLF(ZIL_USER_FUNCTION),
WOF_FLAGS woFlags = WOF_NO_FLAGS);

556 OpenZinc Application Framework—Programmer's Reference Volume 2

Portability
This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics • Windows
• OSF/Motif • Curses

• OS/2
• NEXTSTEP

Remarks
This constructor creates a new UIW_TABLE_RECORD class object.

• widthin is the width of the record. Typically, this value is in cell coordinates. If the
WOF_MINICELL flag is set, however, this value will be interpreted as a minicell

• heightin is the height of the record. Typically, this value is in cell coordinates. If the
WOF_MINICELL flag is set, however, this value will be interpreted as a minicell

• userFunctionin is a programmer defined function that will be called by the library at
certain points in the user's interaction with an object. The user function will be
called by the library when:

1—the user moves onto the record,

2—the record is selected, or

3—the user moves to a different record in the table or to a different object in the
window, or

4—the record needs its fields updated.

Because the user function is called at these times, the programmer can do data
validation or any other type of necessary operation. The definition of the
userFunction is as follows:

EVENT_TYPE FunctionName(UI_WINDOW_OBJECT *object,
UI_EVENT &event, EVENT_TYPE ccode);

returnValueout indicates if an error has occurred. returnValue should be 0 if the
no error occurred. Otherwise, the programmer should call the error system with
an appropriate error message and return -1.

value.

value.

Chapter 27 - UIW_TABLE_RECORD 557

objectin is a pointer to the object for which the user function is being called.
This argument must be typecast by the programmer if class-specific members
need to be accessed.

eventin is the run-time message passed to the object.

ccodein is the logical or system code that caused the user function to be called.
This code (declared in UI_EVT.HPP) will be one of the following constant
values:

L_SELECT—The <ENTER> key was pressed while the record was current.

S_CURRENT—The record just received focus because the user moved to
it from another record or object.

S_NON_CURRENT—The record just lost focus because the user moved
to another record or object.

S_SET_DATA—The fields must have their data set. The user function
should use the data pointed to by event.data and the record number
contained in event.rawCode to set the data in the fields

• woFlagsin are flags (common to all window objects) that determine the general
operation of the window. The following flags (declared in UI_WIN.HPP) affect the
operation of a UIW_TABLE_RECORD class object:

WOF_BORDER—Draws a border around the object. The graphical border's
appearance will depend on the operating system used, and, if in DOS, on the
graphics style being used. In text mode, a border may or may not be drawn,
depending on the text style being used. See "Appendix A—Support
Definitions" in this manual for information on changing DOS graphics mode
styles and text mode styles. This flag should not be used if the window has a
UIW_BORDER object.

WOF_MINICELL—Causes the position and size values that were passed into
the constructor to be interpreted as minicells. A minicell is a fraction the size
of a normal cell. Greater precision in object placement is achieved by specifying
an object's position in minicell coordinates. A minicell is 1/1 Oth the size of a
normal cell by default.

558 OpenZinc Application Framework—Programmer's Reference Volume 2

WOF_NO_FLAGS—Does not associate any special window flags with the
object. This flag should not be used in conjunction with any other WOF flags.
This flag is set by default in the constructor.

UIW_TABLE_RECORD::Drawltem

Syntax
#include <ui_win.hpp>

virtual EVENT_TYPE DrawItem(const UI_EVENT &event, EVENT_TYPE ccode);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This virtual advanced function is used to draw the object. If the WOS_OWNERDRAW
status is set for the object, this function will be called when drawing the table record.
This allows the programmer to derive a new class from UIW_TABLE_RECORD and
handle the drawing of the table record, if desired. For the UIW_TABLE_RECORD
object, the WOS_OWNERDRAW status is always set.

• returnValueout is a response based on the success of the function call. If the object
is drawn the function returns a non-zero value. If the object is not drawn, 0 is
returned.

• eventin contains the run-time message that caused the object to be redrawn.
event.region contains the region in need of updating. The following logical events
may be sent to the Drawltem() function:

S_CURRENT, S_NON_CURRENT, S_DISPLAY_ACTIVE and S_DIS-
PLAY_INACTIVE—Messages that cause the object to be redrawn.

WM_DRAWITEM—A message that causes the object to be redrawn. This
message is specific to Windows and OS/2.

Chapter 27 - UIW_TABLE_RECORD 559

Expose—A message that causes the object to be redrawn. This message is
specific to Motif.

• ccode in contains the logical interpretation of event.

UIW_TABLE_RECORD::Event

Syntax
#include <ui_win.hpp>

virtual EVENT_TYPE Event(const UI_EVENT &event);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function processes run-time messages sent to the table record object. It is declared
virtual so that any derived table record class can override its default operation.

• returnValueout indicates how event was processed. If the event is processed
successfully, the function returns the logical type of event that was interpreted from
event. If the event could not be processed, S_UNKNOWN is returned.

• eventin contains a run-time message for the table record object. The type of operation
performed depends on the interpretation of the event. The following logical events
are processed by Event():

L_SELECT—Indicates that the object has been selected.

S_INITIALIZE—Causes the object to initialize any necessary information that
may require a knowledge of its parent or siblings. When a window is added to
the Window Manager, the Window Manager sends this message to cause the
window and all the objects attached to the window to initialize themselves.

560 OpenZinc Application Framework—Programmer's Reference Volume 2

S_SET_DATA—Causes the record to update the data in its fields.
event.rawCode contains the record number and event.data contains the data for
the record. If the UIW_TABLE_RECORD processes this message (i.e., the table
record is not a derived table record) it will call the user function, if one exists,
with a ccode of S_SET_DATA. event is sent to the user function.

All other events are passed by Event() to UIW_WINDOW::Event() for processing.

UIW_TABLE_RECORD::Information

Syntax
#include <ui_win.hpp>

virtual void *Information(ZIL_INFO_REQUEST request, void *data,
ZIL_OBJECTID objectID = ID_DEFAULT);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function allows OpenZinc Application Framework objects and programmer functions to
get or modify specified information about an object.

• returnValueout is a pointer to the return data that was requested. The type of the
return data depends on the request. If the request did not require the return of
information, this value is NULL.

• requestin is a request to get or set information associated with the object. The
following requests (defined in UI_WIN.HPP) are recognized by the table record:

I_CHANGED_FLAGS—Informs the object that the programmer has changed
some flags associated with the object and that the object should update itself
accordingly. This request should be sent after changing an object's flags,

Chapter 27 - UIW_TABLE_RECORD 561

particularly if the new flag settings will change the visual appearance of the
object.

I_INITIALIZE_CLASS—Causes the object to initialize any basic information
that does not require a knowledge of its parent or sibling objects. This request
is sent from the constructor of the object.

I_GET_VALUE—Requests a pointer to the data associated with the record. If
this request is sent, data should be a doubly-indirected pointer to void.

All other requests are passed by Information() to UIW_WINDOW::Information()
for processing.

• datain/out is used to provide information to the function or to receive the information
requested, depending on the type of request. In general, this must be space allocated
by the programmer.

• objectIDin is a ZIL_OBJECTID that specifies which type of object the request is
intended for. Because the Information() function is virtual, it is possible for an
object to be able to handle a request at more than one level of its inheritance
hierarchy. objectID removes the ambiguity by specifying which level of an object's
hierarchy should process the request. If no value is provided for objectID, the object
will attempt to interpret the request with the objectID of the actual object type.

UIW_TABLE_RECORD::RegionMax

Syntax
#include <ui_win.hpp>

virtual void RegionMax(UI_WINDOW_OBJECT *object);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

562 OpenZinc Application Framework—Programmer's Reference Volume 2

Remarks
This virtual function calculates the space object will occupy within the window and sets
object->trueRegion accordingly.

• objectin is a pointer to the object that is requesting the maximum region of the
window. Its trueRegion member will be modified with its actual position.

UIW_TABLE_RECORD::VirtualRecord

Syntax
#include <ui_win.hpp>

UIW_TABLE_RECORD *VirtualRecord(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function creates a copy of the table record. It does this by storing the record and
reading it back in. Thus it is required that ZIL_STORE and ZIL_LOAD be defined when
building the OpenZinc libraries if the UIW_TABLE object is to be used.

• returnValueout is a pointer to the new table record.

Storage Members

This section describes those class members that are used for storage purposes.

Chapter 27 - UIW_TABLE_RECORD 563

UIW_TABLE_RECORD::UIW_TABLE_RECORD

Syntax
#include <ui_win.hpp>

UIW_TABLE_RECORD(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object,
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced constructor creates a new UIW_TABLE_RECORD by loading the object
from a data file. Typically, the programmer does not need to use this constructor. If a
table record is stored in a data file it is usually stored as part of a UIW_TABLE and will
be loaded when the table is loaded.

• namein is the name of the object to be loaded.

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT:.objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,

564 OpenZinc Application Framework—Programmer's Reference Volume 2

the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT:.userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

UIW_TABLE_RECORD::Load

Syntax
#include <ui_win.hpp>

virtual void Load(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced function is used to load a UIW_TABLE_RECORD from a persistent object
data file. It is called by the persistent constructor and is typically not used by the
programmer.

• namein is the name of the object to be loaded.

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

Chapter 27 - UIW_TABLE_RECORD 565

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT:.objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT:. userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

UIW_TABLE_RECORD::New

Syntax
#include <ui_win.hpp>

static UI_WINDOW_OBJECT *New(const ZIL_ICHAR *name,
ZIL_STORAGE_READ_ONLY *file =

ZIL_NULLP(ZIL_STORAGE_READ_ONLY),
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY),
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

566 OpenZinc Application Framework—Programmer's Reference Volume 2

Remarks
This advanced function is used to load a persistent object from a data file. This function
is a static class member so that its address can be placed in a table used by the library to
load persistent objects from a data file.

NOTE: The application must first create a display if objects are to be loaded from a data
file.

• namein is the name of the object to be loaded.

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT::objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT:. userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

UIW_TABLE_RECORD::NewFunction

Syntax
#include <ui_win.hpp>

virtual ZIL_NEW_FUNCTION NewFunction(void);

Chapter 27 - UIW_TABLE_RECORD 567

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This virtual function returns a pointer to the object's New() function.

• returnValueout is a pointer to the object's New() function.

UIW_TABLE_RECORD::Store

Syntax
#include <ui_win.hpp>

virtual void Store(const ZIL_ICHAR *name, ZIL_STORAGE *file,
ZIL_STORAGE_OBJECT *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced function is used to write an object to a data file.

• namein is the name of the object to be stored.

• filein is a pointer to the ZIL_STORAGE where the persistent object will be stored.
For more information on persistent object files, see "Chapter 66—ZIL_STORAGE"
of Programmer's Reference Volume 1.

568 OpenZinc Application Framework—Programmer's Reference Volume 2

• objectin is a pointer to the ZIL_STORAGE_OBJECT where the persistent object
information will be stored. This must be allocated by the programmer. For more
information on loading persistent objects, see "Chapter 68—ZIL_STORAGE_-
OBJECT" of Programmer's Reference Volume 1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT:.objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT::userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

Chapter 27 - UIW_TABLE_RECORD 569

OpenZinc Application Framework—Programmer's Reference Volume 2 570

CHAPTER 28 - UIW TEXT

The UIW_TEXT class is used to display multiple-line text information and to collect
information, in text form, from an end-user. Scroll bars can be added to the text field to
allow both horizontal and vertical scrolling with the mouse. The figure below shows
graphical implementations of a UIW_TEXT class object:

The UIW_TEXT class is declared in UI_WIN.HPP. Its public and protected members
are:

class ZIL_EXPORT_CLASS UIW_TEXT : public UIW_WINDOW {
public:

static ZIL_ICHAR _className[];
int insertMode;

UIW_TEXT(int left, int top, int width, int height, ZIL_ICHAR *text,
int maxLength = -1, WNF_FLAGS wnFlags = WNF_NO_WRAP,
WOF_FLAGS woFlags = WOF_BORDER | WOF_AUTO_CLEAR,
ZIL_USER_FUNCTION userFunction = ZIL_NULLF(ZIL_USER_FUNCTION));

virtual ~UIW_TEXT(void);
virtual ZIL_ICHAR *ClassName(void);
virtual EVENT_TYPE Event(const UI_EVENT &event);
ZIL_ICHAR *DataGet(void);
void DataSet(ZIL_ICHAR *text, int maxLength = -1);
virtual void *Information(ZIL_INFO_REQUEST request, void *data,

ZIL_OBJECTID objectID = ID_DEFAULT);

#if defined (ZIL_LOAD)
virtual ZIL_NEW_FUNCTION NewFunction(void);
static UI_WINDOW_OBJECT *New(const ZIL_ICHAR *name,

ZIL_STORAGE_READ_ONLY *file = ZIL_NULLP(ZIL_STORAGE_READ_ONLY),
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY),
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

Chapter 28 - UIW_TEXT 571

UIW_TEXT(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object,
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

virtual void Load(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

#endif
#if defined(ZIL_STORE)

virtual void Store(const ZIL_ICHAR *name, ZIL_STORAGE *file,
ZIL_STORAGE_OBJECT *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

#endif

protected:
int maxLength;
ZIL_ICHAR *text;

virtual EVENT_TYPE Drawltem(const UI_EVENT &event, EVENT_TYPE ccode);

int CursorOffset(int offset = -1) ;
void GetCursorPos(UI_POSITION *position);
void SetCursorPos(const UI_POSITION &position);

} ;

General Members

This section describes those members that are used for general purposes.

• _className contains a string identifying the class. The string is always the same
name as the class, is always in English, and never changes. For example, for the
UIW_TEXT class, _className is "UIW_TEXT."

• insertMode indicates whether the text object is in insert or overstrike mode. If
insertMode is TRUE, the text is in insert mode. Otherwise the text is in overstrike
mode.

• maxLength is the maximum length of the text buffer. maxLength does not include
the NULL terminator.

• text is the text that is displayed in the text field.

572 OpenZinc Application Framework—Programmer's Reference Volume 2

UIW TEXT::UIW TEXT

Syntax
#include <ui_win.hpp>

UIW_TEXT(int left, int top, int width, int height, ZIL_ICHAR *text, int maxLength = -1,
WNF_FLAGS wnFlags = WNF_NO_WRAP,
WOF_FLAGS woFlags = WOF_BORDER | WOF_AUTO_CLEAR,
ZIL_USER_FUNCTION userFunction = ZIL_NULLF(ZIL_USER_FUNCTION));

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This constructor creates a new UIW_TEXT class object.

• left i n and topin is the starting position of the text field within its parent window.
Typically, these values are in cell coordinates. If the WOF_MINICELL flag is set,
however, these values will be interpreted as minicell values.

• widthin is the width of the text field. Typically, this value is in cell coordinates. If
the WOF_MINICELL flag is set, however, this value will be interpreted as a minicell
value.

• heightjn is the height of the text field. Typically, this value is in cell coordinates. If
the WOF_MINICELL flag is set, however, this value will be interpreted as a minicell
value.

textin is the text that is shown in the text field. Unless the WOF_NO_ALLOCATE_-
DATA flag is set, the text is copied into a buffer, allocated by the UIW_TEXT
object, which is maxLength + 1 characters in length. If the WOF_NO_-
ALLOCATE_DATA flag is set, text must be space, allocated by the programmer, that
is not deleted until the text field is deleted.

Chapter 28 - UIW_TEXT 573

• maxLengthin is the maximum length of the text buffer, excluding the NULL
terminator. The UIW_TEXT object will automatically allocate extra space for the
NULL terminator. If maxLength is -1 (default value), the size of the text buffer
allocated is the initial length of text, including the NULL terminator. Please be aware
that setting a large maxLength value may result in a smaller buffer being allocated
due to memory limitations. For example, MS-Windows allocates the memory it uses
for the text field from the local heap, so large buffers may not be allocated.

• wnFlagsin are flags that define the operation of the text field. The following flags
(declared in UI_WIN.HPP) affect the operation of a UIW_TEXT class object:

WNF_NO_FLAGS—Does not associate any special window flags with the
object. This flag should not be used in conjunction with any other WNF_-
FLAGS.

WNF_NO_WRAP—Prevents the text object from wrapping a line of text that
is too wide to display on a single line. If this flag is not set, the text would
automatically wrap to the next line. This flag is set by default in the constructor.

• woFlagsin are flags (common to all window objects) that determine the general
operation of the text object. The following flags (declared in UI_WIN.HPP) control
the general presentation of, and interaction with, a UIW_TEXT class object:

WOF_AUTO_CLEAR—Automatically marks the entire buffer if the end-user
tabs to the field from another object. If the user then enters data (without first
having pressed any movement or editing keys) the entire field will be replaced.
This flag is set by default in the constructor.

WOF_BORDER—Draws a border around the object. The graphical border's
appearance will depend on the operating system used, and, if in DOS, on the
graphics style being used. In text mode, a border may or may not be drawn,
depending on the text style being used. See "Appendix A—Support
Definitions" in this manual for information on changing DOS graphics mode
styles and text mode styles. This flag is set by default in the constructor.

WOF_MINICELL—Causes the position and size values that were passed into
the constructor to be interpreted as minicells. A minicell is a fraction the size
of a normal cell. Greater precision in object placement is achieved by specifying
an object's position in minicell coordinates. A minicell is l/10th the size of a
normal cell by default.

574 OpenZinc Application Framework—Programmer's Reference Volume 2

WOF_NO_ALLOCATE_DATA—Prevents the object from allocating a buffer
to store the data. If this flag is set, the programmer is responsible for allocating
the memory for the data. The programmer is also responsible for deallocating
that memory when it is no longer needed.

WOF_NO_FLAGS—Does not associate any special window flags with the
object. This flag should not be used in conjunction with any other WOF flags.

WOF_NON_FIELD_REGION—Causes the object to ignore its position and
size parameters and use the remaining available space in its parent object.

WOF_NON_SELECTABLE—Prevents the object from being selected. If this
flag is set, the user will not be able to position on nor edit the text information.
Typically, the field will be drawn in such a manner as to appear non-selectable
(e.g., it may appear lighter than a selectable field).

WOF_UNANSWERED—Sets the initial status of the field to be "unanswered."
An unanswered field is displayed as an empty field.

WOF_VIEW_ONLY—Prevents the object from being edited. However, the
object may become current and the user may scroll through the data, mark it, and
copy it.

• userFunctionjn is a programmer defined function that will be called by the library at
certain points in the user's interaction with an object. The user function will be
called by the library when:

1—the user moves onto the field, or

2—the user moves to a different field in the window or to a different window.

Because the user function is called at these times, the programmer can do data
validation or any other type of necessary operation. The definition of the
userFunction is as follows:

EVENT_TYPE FunctionName(UI_WINDOW_OBJECT *object,
UI_EVENT &event, EVENT_TYPE ccode)-

returnValueout indicates if an error has occurred. returnValue should be 0 if the
no error occurred. Otherwise, the programmer should call the error system with
an appropriate error message and return -1.

Chapter 28 - UIW_TEXT 575

objectin is a pointer to the object for which the user function is being called.
This argument must be typecast by the programmer if class-specific members
need to be accessed.

eventin is the run-time message passed to the object.

ccodein is the logical or system code that caused the user function to be called.
This code (declared in UI_WIN.HPP) will be one of the following constant
values:

S_CURRENT—The object just received focus because the user moved to
it from another field or window. This code is sent before any editing
operations are permitted.

S_NON_CURRENT—The object just lost focus because the user moved to
another field or window.

Example
#include <ui_win.hpp>

ExampleFunction(UI_WINDOW_MANAGER *windowManager) {
// Add a text field to the window.
UIW_WINDOW *window =

UIW_WINDOW::Generic(0, 0, 40, 10, "Hello World Window");
*window

+ new UIW_TEXT(0, 0, 0, 0, "Hello, World!", 1024,
WNF_NO_WRAP, WOF_NON_FIELD_REGION);

*windowManager + window;

// The text object will automatically be destroyed when the window
// is destroyed.

}

UIW_TEXT::~UlW_TEXT

Syntax

#include <ui_win.hpp>

virtual ~UIW_TEXT(void);

576 OpenZinc Application Framework—Programmer's Reference Volume 2

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This virtual destructor destroys the class information associated with the UIW_TEXT
object.

UIW_TEXT::ClassName

Syntax
#include <ui_win.hpp>

virtual ZIL_ICHAR *ClassName(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks

This virtual function returns the object's class name.

• returnValueout is a pointer to _className.

Chapter 28 - UIW_TEXT 577

UIW TEXT::CursorOffset

Syntax
#include <ui_win.hpp>

int CursorOffset(int offset = -1);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function is used to get or set the edit cursor offset within the text field buffer.

• returnValueout is the character offset of the cursor within the buffer. For example, if
the edit cursor is currently at character 137, returnValue will be 137.

• o f f s e t i n indicates the character position at which the cursor should be placed. If offset
is -1 (the default) the current cursor position is returned. The text field will be
scrolled, if necessary, so that the new cursor location is in view.

UlW_TEXT::DataGet

Syntax
#include <ui_win.hpp>

ZIL_ICHAR *DataGet(void);

578 OpenZinc Application Framework—Programmer's Reference Volume 2

Portability
This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics • Windows
• OSF/Motif • Curses

• OS/2
• NEXTSTEP

Remarks
This function returns the text information associated with the text object.

• returnValueout is a pointer to the text information associated with the text.

#include <ui_win.hpp>

ExampleFunction{UIW_TEXT *textl, UIW_TEXT *text2) {

ZIL_ICHAR *textData = textl->DataGet();
text2->DataSet(textData);

}

UIW_TEXT::DataSet

Syntax
#include <ui_win.hpp>

void DataSet(ZIL_ICHAR *text, int maxLength = -1);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Example

Chapter 28 - UIW_TEXT 579

Remarks
This function assigns new text to the UIW_TEXT object and redisplays the field. If no
text is passed in (i.e., text is NULL), the field will be redrawn.

• textin is a pointer to the new text. If the WOF_NO_ALLOCATE_DATA flag is set,
this argument must be text, allocated by the programmer, that is not destroyed until
the UIW_TEXT class object is destroyed. Otherwise, the information associated with
this argument is copied by the UIW_TEXT class object. If this argument is NULL,
no text information is changed, but the text field is redisplayed.

• maxLengthin is the number of characters to allocate for the text buffer. If maxLength
is greater than the text's previous length, a new buffer of size maxLength + 1 (for the
NULL terminator) is allocated. Otherwise, if maxLength is -1 or less than the size
of the previous text, the previous buffer is used.

Example
#include <ui_win.hpp>

ExampleFunction(UIW_TEXT *textl, UIW_TEXT *text2) {

ZIL_ICHAR *textData = textl->DataGet();
text2->DataSet(textData);

}

UIW_TEXT::Drawltem

Syntax
#include <ui_win.hpp>

virtual EVENT_TYPE DrawItem(const UI_EVENT &event, EVENT_TYPE ccode);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

580 OpenZinc Application Framework—Programmer's Reference Volume 2

Remarks
This virtual advanced function is used to draw the object. If the WOS_OWNERDRAW
status is set for the object, this function will be called when drawing the text. This allows
the programmer to derive a new class from UIW_TEXT and handle the drawing of the
text, if desired.

• returnValueout is a response based on the success of the function call. If the object
is drawn the function returns a non-zero value. If the object is not drawn, 0 is
returned.

• eventin contains the run-time message that caused the object to be redrawn.
event.region contains the region in need of updating. The following logical events
may be sent to the Drawltem() function:

S_CURRENT, S_NON_CURRENT, S_DISPLAY_ACTIVE and S_DIS-
PLAY_INACTIVE—Messages that cause the object to be redrawn.

WM_DRAWITEM—A message that causes the object to be redrawn. This
message is specific to Windows and OS/2.

Expose—A message that causes the object to be redrawn. This message is
specific to Motif.

• ccodein contains the logical interpretation of event.

UIW_TEXT::Event

Syntax
#include <ui_win.hpp>

virtual EVENT_TYPE Event(const UI_EVENT &event);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Chapter 28 - UIW_TEXT 581

Remarks
This function processes run-time messages sent to the text object. It is declared virtual
so that any derived text class can override its default operation.

• returnValueout indicates how event was processed. If the event is processed
successfully, the function returns the logical type of event that was interpreted from
event. If the event could not be processed, S_UNKNOWN is returned.

• eventin contains a run-time message for the text object. The type of operation
performed depends on the interpretation of the event. The following logical events
are processed by Event():

E_KEY—Indicates that a key has been pressed. It places the character in the
text at the current cursor position unless the text is already maxLength characters.
This message is interpreted from a keyboard event.

L_BACKSPACE—Causes the first editable character to the left of the cursor
position to be deleted and moves the cursor to that position. This message is
interpreted from a keyboard event.

L_BEGIN_MARK, L_CONTINUE_MARK and L_END_MARK—Com-
municate the progress of a mark operation. L_BEGIN_MARK indicates the
marking process is beginning, L_CONTINUE_MARK indicates the growth or
decrease of the marked region, and L_END_MARK indicates the end of the
marking operation. Using a mouse, for example, L_BEGIN_MARK indicates
that the mouse button has been pressed, L_CONTINUE_MARK indicates that
the mouse is currently being dragged with the button depressed, and L_END_-
MARK indicates that the mouse button has been released. These messages are
interpreted from mouse events.

L_BOL—Causes the cursor to move to the beginning of the current line. For
example, where the underscore represents the cursor position, the text Stand and
be counted would change to Stand and be counted as a result of the L_BOL
message. If the mark feature is on, L_BOL extends the marked region to the
beginning of the line. This message is interpreted from a keyboard event.

L_BOTTOM—Scrolls the text to the last page and places the cursor at the end
of the buffer. This message is interpreted from a keyboard event.

L_COPY_MARK—Causes the marked region to be copied into the global paste
buffer. This message is interpreted from a keyboard event.

582 OpenZinc Application Framework—Programmer's Reference Volume 2

L_CUT—Cuts the marked portion of the text. The cut region is stored in the
global paste buffer. This message is interpreted from a keyboard event.

L_DELETE—Causes the marked characters, if any, or the character at the
current cursor position to be deleted. For example, where the underscore
represents the cursor position, the text Stand and be counted would change to
Stand ad be counted as a result of the L_DELETE message. This message is
interpreted from a keyboard event.

L_DELETE_EOL—Causes all characters from the current cursor position to the
end of the line to be deleted. For example, where the underscore represents the
cursor position, the text Stand and be counted would change to Stand a_ as a
result of the L_DELETE_EOL message. This message is interpreted from a
keyboard event.

L_DELETE_WORD—Causes the word at the cursor position to be deleted,
along with any trailing spaces. For example, where the underscore represents the
cursor position, the text Stand and be counted would change to Stand be counted
as a result of the L_DELETE_WORD message. This message is interpreted
from a keyboard event.

L_DOWN—Causes the cursor to move down one line in the text buffer. Where
possible, the cursor position stays at the same horizontal character offset. This
message is interpreted from a keyboard event.

L_EOL—Causes the cursor to move to the end of the current line. For example,
where the underscore represents the cursor position, the text Stand and be
counted would change to Stand and be counted_ as a result of the L_EOL
message. If the mark feature is on, L_EOL extends the marked region to the end
of the line. This message is interpreted from a keyboard event.

LJLEFT—Causes the cursor to move one character or space to the left of its
current position, if it is not in the field's first editable position. If the mark
feature is on, L_LEFT extends the marked region to include the character. This
message is interpreted from a keyboard event.

L_MARK_BOL—Marks the text from the current cursor position to the
beginning of the current line and places the cursor at the beginning of the line.
This message is interpreted from a keyboard event.

L_MARK_DOWN—Causes the cursor to move down one line in the text buffer.
Where possible, the cursor position stays at the same horizontal character offset.

Chapter 28 - UIW_TEXT 583

The text between the starting cursor position and the ending cursor position will
be marked. This message is interpreted from a keyboard event.

L_MARK_EOL—Marks the text from the current cursor position to the end of
the current line and places the cursor at the end of the line. This message is
interpreted from a keyboard event.

L_MARK_LEFT—Moves the cursor to the left one character, marking the
character. This message is interpreted from a keyboard event.

L_MARK_PGDN—Causes the text field to scroll down one page. The text
between the starting cursor position and the ending cursor position will be
marked. This message is interpreted from a keyboard event.

L_MARK_PGUP—Causes the text field to scroll up one page. The text
between the starting cursor position and the ending cursor position will be
marked. This message is interpreted from a keyboard event.

L_MARK_RIGHT—Moves the cursor to the right one character, marking the
character. This message is interpreted from a keyboard event.

L_MARK_UP—Causes the cursor to move up one line in the text buffer.
Where possible, the cursor position stays at the same horizontal character offset.
The text between the starting cursor position and the ending cursor position will
be marked. This message is interpreted from a keyboard event.

L_MARK_WORD_LEFT—Causes the cursor position to be moved to the
beginning of the current word or, if the cursor is at the beginning of the current
word, to the beginning of the next word to the left of the current cursor position.
The text between the starting cursor position and the ending cursor position will
be marked. This message is interpreted from a keyboard event.

L_MARK_WORD_RIGHT—Causes the cursor to move to the beginning of the
next word to the right of the current cursor position. The text between the
starting cursor position and the ending cursor position will be marked. This
message is interpreted from a keyboard event.

L_PASTE—Causes the contents of the paste buffer to be placed in the field at
the current cursor position. For example, if the contents of the paste buffer were
up, the text Stand and be counted would change to Stand up and be counted. If
the contents are too large for the text field, only that portion which fits will be
pasted. This message is interpreted from a keyboard event.

584 OpenZinc Application Framework—Programmer's Reference Volume 2

L_PGDN—Causes the text field to scroll down one page. This message is
interpreted from a keyboard event.

L_PGUP—Causes the text field to scroll up one page. This message is
interpreted from a keyboard event.

L_RIGHT—Causes the cursor to move one character or space to the right of its
current position, if it is not in the field's last editable position. If the mark
feature is on, L_RIGHT extends the marked region to include the character. This
message is interpreted from a keyboard event.

L_SELECT—Indicates that the object has been selected. The selection may be
the result of a mouse click or a keyboard action.

L_TOP—Scrolls the text to the first page and places the cursor at the beginning
of the buffer. This message is interpreted from a keyboard event.

L_UP—Causes the cursor to move up one line in the text buffer. Where
possible, the cursor position stays at the same horizontal character offset. This
message is interpreted from a keyboard event.

L_VIEW—Indicates that the mouse is being moved over the text field. This
message allows the field to alter the mouse image.

L_WORD_LEFT—Causes the cursor position to be moved to the beginning of
the current word or, if the cursor is at the beginning of the current word, to the
beginning of the next word to the left of the current cursor position. For
example, where the underscore represents the cursor position, the text Stand and
be counted would change to Stand and be counted, as a result of the
L_WORD_LEFT message. This message is interpreted from a keyboard event.

L_WORD_RIGHT—Causes the cursor to move to the beginning of the next
word to the right of the current cursor position. For example, where the
underscore represents the cursor position, the text Stand and be counted would
change to Stand and be counted as a result of the L_WORD_RIGHT message.
This message is interpreted from a keyboard event.

S_ADD_OBJECT—Causes a new object to be added to the text field, such as
a scroll bar. event.data will point to the new object to be added.

S_CHANGED—Causes the object to recalculate its position and size. When a
window is moved or sized, the objects on the window will need to recalculate

Chapter 28 - UIW_TEXT 585

their positions. This message informs an object that it has changed and that it
should update itself.

S_CREATE—Causes the object to create itself. The object will calculate its
position and size and, if necessary, will register itself with the operating system.
This message is sent by the Window Manager when a window is attached to it
to cause the window and all the objects attached to the window to determine
their positions.

S_CURRENT—Causes the object to draw itself to appear current. This message
is sent by the Window Manager to a window when it becomes current. The
window, in turn, passes this message to the object on the window that is current.

S_DEINITIALIZE—Informs the object that it is about to be removed from the
application and that it should deinitialize any information. The Window Manager
sends this message to a window when the window is subtracted from the
Window Manager. The window, in turn, relays the message to all objects
attached to it.

S_DISPLAY_ACTIYE—Causes the object to draw itself to appear active. An
active object is one that is on the active (i.e., current) window. Most objects do
not display differently whether they are active or inactive. An active object
should not be confused with a current object. An object is active if it is on the
active window. However, it may not be the current object on the window.

The region that needs to be redisplayed is passed in the UI_REGION portion of
the UI_EVENT structure when this message is sent. The object only needs to
redisplay when the region passed by the event overlaps the region of the object.
This message is sent by a UIW_WINDOW to all the non-current, active objects
attached to it.

S_DISPLAY_INACTIVE—Causes the object to draw itself to appear inactive.
An inactive object is one that is not on the active (i.e., current) window. Most
objects do not display differently whether they are inactive or active.

The region that needs to be redisplayed is passed in the UI_REGION portion of
the UI_EVENT structure when this message is sent. The object only needs to
redisplay when the region passed with the event overlaps the region of the object.
This message is sent by a UIW_WINDOW to all the objects attached to it.

S_HSCROLL—Causes the text to scroll its contents horizontally, event.scroll-
delta indicates how far to scroll.

586 OpenZinc Application Framework—Programmer's Reference Volume 2

S_INITIALIZE—Causes the object to initialize any necessary information that
may require a knowledge of its parent or siblings. When a window is added to
the Window Manager, the Window Manager sends this message to cause the
window and all the objects attached to the window to initialize themselves.

S_MOVE—Causes the object to update its location. The distance to move is
contained in the position field of UI_EVENT. For example, an event.position.-
line of -10 and an event.position.column of 15 moves the object 10 lines up and
15 columns to the right.

S_NON_CURRENT—Indicates that the object has just become non-current.
This message is received when the user moves to another field or window.

S_REGISTER_OBJECT—Causes the object to register itself with the operating
system.

S_SUBTRACT_OBJECT—Causes an object to be subtracted from the list, such
as a scroll bar. event.data will point to the object to be subtracted.

S_VERIFY_STATUS—Causes the object to correlate its state (e.g., cursor
position) with the operating system.

S_VSCROLL—Causes the text to scroll vertically, event.scroll.delta indicates
how far to scroll.

All other events are passed by Event() to UIW_WINDOW::Event() for processing.

NOTE: Because most graphical operating systems already process their own events
related to this object, the messages listed above may not be handled in every
environment. Wherever possible, OpenZinc allows the operating system to process its own
messages so that memory use and speed will be as efficient as possible. In these
situations, the system event can be trapped in a derived Event() function.

UIW_TEXT::GetCursorPos

Syntax
#include <ui_win.hpp>

void GetCursorPos(UI_POSITION *position);

Chapter 28 - UIW_TEXT 587

Portability
This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics • Windows
• OSF/Motif • Curses

• OS/2
• NEXTSTEP

Remarks
This function returns the current cursor xy-position within the visible text field.

• positionout is a pointer to the UI_POSITION structure to which the cursor location
information will be copied. The cursor location is relative to the top-left corner of
the field, position.column will contain the character offset from the left edge of the
field and position.line will contain the character offset from the top edge of the field.

UIW_TEXT::Information

Syntax
#include <ui_win.hpp>

virtual void *Information(ZIL_INFO_REQUEST request, void *data,
ZIL_OBJECTID objectID = ID_DEFAULT);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

This function allows OpenZinc Application Framework objects and programmer functions to
get or modify specified information about an object.

• returnValueout is a pointer to the return data that was requested. The type of the
return data depends on the request. If the request did not require the return of
information, this value is NULL.

Remarks

588 OpenZinc Application Framework—Programmer's Reference Volume 2

• requestin is a request to get or set information associated with the object. The
following requests (defined in UI_WIN.HPP) are recognized by the text object:

I_CHANGED_FLAGS—Informs the object that the programmer has changed
some flags associated with the object and that the object should update itself
accordingly. This request should be sent after changing an object's flags,
particularly if the new flag settings will change the visual appearance of the
object.

I_COPY_TEXT—Copies the text associated with the object into a buffer
provided by the programmer. If this request is sent, data must be the address of
a buffer where the text will be copied. This buffer must be large enough to
contain all of the characters associated with the text and the terminating NULL
character.

I_GET_MAXLENGTH—Gets the maxLength value. If data is NULL, the
address of maxLength will be returned. Otherwise, data should be a pointer to
an integer where maxLength will be copied.

I_GET_TEXT—Returns a pointer to the text associated with the object. If this
request is sent, data should be a doubly-indirected pointer to ZIL_ICHAR. This
request does not copy the text into a new buffer.

I_INITIALIZE_CLASS—Causes the object to initialize any basic information
that does not require a knowledge of its parent or sibling objects. This request
is sent from the constructor of the object.

I_SET_MAXLENGTH—Sets the maxLength member. If this request is sent
data should be a pointer to an integer that contains the new maximum length.

I_SET_TEXT—Sets the text associated with the object. This request will also
redisplay the object with the new text, data should be a pointer to the new text.

All other requests are passed by Information() to UIW_WINDOW::Information()
for processing.

• datain/out is used to provide information to the function or to receive the information
requested, depending on the type of request. In general, this must be space allocated
by the programmer.

• objectIDin is a ZIL_OBJECTID that specifies which type of object the request is
intended for. Because the Information() function is virtual, it is possible for an

Chapter 28 - UIW_TEXT 589

object to be able to handle a request at more than one level of its inheritance
hierarchy. objectID removes the ambiguity by specifying which level of an object's
hierarchy should process the request. If no value is provided for objectID, the object
will attempt to interpret the request with the objectID of the actual object type.

Example
#include <ui_win.hpp>

ExampleFunction()
{

ZIL_ICHAR string[30];
text-information(I_COPY_TEXT, string);

textl->Information(I_SET_TEXT, "First name:");
text2->Information(I_SET_TEXT, "Last name:");

UIW_TEXT::SetCursorPos

Syntax
#include <ui_win.hpp>

void SetCursorPos(const UI_POSITION &position);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function is used to set the cursor position within the displayed text field.

• positionin is a pointer to the UI_POSITION structure that is to contain the new cursor
position, position.column is the character offset from the left edge of the field, and
position.line is the character offset from the top edge of the field.

590 OpenZinc Application Framework—Programmer's Reference Volume 2

Storage Members

This section describes those class members that are used for storage purposes.

UIW TEXT::UIW_TEXT

Syntax
#include <ui_win.hpp>

UIW_TEXT(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object,
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced constructor creates a new UIW_TEXT by loading the object from a data
file. Typically, the programmer does not need to use this constructor. If a text object is
stored in a data file it is usually stored as part of a UIW_WINDOW and will be loaded
when the window is loaded.

• namein is the name of the object to be loaded.

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter

Chapter 28 - UIW_TEXT 591

69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UIJWINDOWJOB JECT::objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT::userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

UIW_TEXT::Load

Syntax
#include <ui_win.hpp>

virtual void Load(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced function is used to load a UIW_TEXT from a persistent object data file.
It is called by the persistent constructor and is typically not used by the programmer.

• namein is the name of the object to be loaded.

592 OpenZinc Application Framework—Programmer's Reference Volume 2

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT:.objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT::userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

UIW TEXT::New

Syntax
#include <ui_win.hpp>

static UI_WINDOW_OBJECT *New(const ZIL_ICHAR *name,
ZIL_STORAGE_READ_ONLY *file =

ZIL_NULLP(ZIL_STORAGE_READ_ONLY),
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY),
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

Chapter 28 - UIW_TEXT 593

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced function is used to load a persistent object from a data file. This function
is a static class member so that its address can be placed in a table used by the library to
load persistent objects from a data file.

NOTE: The application must first create a display if objects are to be loaded from a data
file.

• namein the name of the object to be loaded.

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT:.objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT::userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

594 OpenZinc Application Framework—Programmer's Reference Volume 2

UIW TEXT::NewFunction

Syntax
#include <ui_win.hpp>

virtual ZIL_NEW_FUNCTION NewFunction(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks

This virtual function returns a pointer to the object's New() function.

• returnValueout is a pointer to the object's New() function.

UIW_TEXT::Store

Syntax
#include <ui_win.hpp>

virtual void Store(const ZIL_ICHAR *name, ZIL_STORAGE *file,
ZIL_STORAGE_OBJECT *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Chapter 28 - UIW_TEXT 595

Remarks
This advanced function is used to write an object to a data file.

• namein is the name of the object to be stored.

• filein is a pointer to the ZIL_STORAGE where the persistent object will be stored.
For more information on persistent object files, see "Chapter 66—ZIL_STORAGE"
of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT where the persistent object
information will be stored. This must be allocated by the programmer. For more
information on loading persistent objects, see "Chapter 68—ZIL_STORAGE_-
OBJECT" of Programmer's Reference Volume 1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT:.objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT::userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

596 OpenZinc Application Framework—Programmer's Reference Volume 2

CHAPTER 29 - UIW_TIME

The UIW_TIME class is used to display time information to the screen and to collect
information, in time format, from an end-user. The UIW_TIME class will automatically
format the displayed time. The UIW_TIME class is a high-level object that is used to
interact with the end-user. It makes use of the ZIL_TIME class, which is a low-level
object that handles the details of time data manipulation. See "Chapter 72—ZIL_TIME"
of Programmer's Reference Volume 1 for more information about the ZIL_TIME class.
The figure below shows graphical implementations of UIW_TIME objects:

The UIW_TIME class is declared in UI_WIN.HPP. Its public and protected members
are:

class ZIL_EXPORT_CLASS UIW_TIME : public UIW_STRING {
public:

static ZIL_ICHAR _className[];
static int defaultlnitialized;
TMF_FLAGS tmFlags;

#if defined(ZIL_3x_COMPAT)
static TMF_FLAGS rangeFlags;

#endif

UIW_TIME(int left, int top, int width, ZIL_TIME *time,
const ZIL_ICHAR *range = ZIL_NULLP{ZIL_ICHAR),
TMF_FLAGS tmFlags = TMF_NO_FLAGS,
WOF_FLAGS woFlags = WOF_BORDER | WOF_AUTO_CLEAR,
ZIL_USER_FUNCTION userFunction = ZIL_NULLF(ZIL_USER_FUNCTION));

virtual ~UIW_TIME(void);
virtual ZIL_ICHAR *ClassName(void);
virtual EVENT_TYPE Event(const UI_EVENT &event);
ZIL_TIME *DataGet(void);
void DataSet(ZIL_TIME *time);
virtual void *Information(ZIL_INFO_REQUEST request, void *data,

ZIL_OBJECTID objectID = ID_DEFAULT);

Chapter 29 - UIW_TIME 597

virtual int Validate(int processError = TRUE);

#if defined (ZIL_LOAD)
virtual ZIL_NEW_FUNCTION NewFunction(void);
static UI_WINDOW_OBJECT *New(const ZIL_ICHAR *name,

ZIL_STORAGE_READ_ONLY *file = ZIL_NULLP(ZIL_STORAGE_READ_ONLY),
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY),
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

UIW_TIME(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object,
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM) ,
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

virtual void Load(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

#endif
#if defined (ZIL_STORE)

virtual void Store(const ZIL_ICHAR *name, ZIL_STORAGE *file,
ZIL_STORAGE_OBJECT *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

#endif

void SetLanguage(const ZIL_ICHAR *languageName);

protected:
ZIL_TIME *time;
ZIL_ICHAR *range;
const ZIL_LANGUAGE *myLanguage;

} ;

General Members

This section describes those members that are used for general purposes.

• _className contains a string identifying the class. The string is always the same
name as the class, is always in English, and never changes. For example, for the
UIW_TIME class, _className is "UIW_TIME."

• defaultlnitialized indicates if the default language strings for this object have been set
up. The default strings are located in the file LANG_DEF.CPP. If defaultlnitialized
is TRUE, the strings have been set up. Otherwise they have not been.

• rangeFlags are flags that define how the range values are interpreted. rangeFlags
is set to TMF_SECONDS | TMFJHUNDREDTHS by default.

• tmFlags are flags that define the operation of the UIW_TIME class. A full
description of the time flags is given in the UIW_TIME constructor.

598 OpenZinc Application Framework—Programmer's Reference Volume 2

• time is a pointer to a ZIL_TIME that is used to manage the low-level time
information. If the WOF_NO_ALLOCATE_DATA flag is set, this member will
simply point to the ZIL_TIME value passed in.

• range is a string that specifies the range(s) of acceptable time values, range is a
copy of the range that is passed to the constructor.

• myLanguage is the ZIL_LANGUAGE object that contains the string translations for
this object.

UIW_TIME::UIW_TIME

Syntax
#include <ui_win.hpp>

UIW_TIME(int left, int top, int width, ZIL_TIME *time,
const ZIL_ICHAR *range = ZIL_NULLP(ZIL_ICHAR),
TMFJLAGS tmFlags = TMF_NO_FLAGS,
WOF.FLAGS woFlags = W0FJ30RDER | WOF_AUTO_CLEAR,
ZIL_USER_FUNCTION userFunction = ZIL_NULLF(ZIL_USER_FUNCTION));

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This constructor creates a new UIW_TIME class object.

• left i n and topin is the starting position of the time field within its parent window.
Typically, these values are in cell coordinates. If the WOF_MINICELL flag is set,
however, these values will be interpreted as minicell values.

• widthin is the width of the time field. Typically, this value is in cell coordinates. If
the WOF_MINICELL flag is set, however, this value will be interpreted as a minicell
value. The height is determined automatically by the UIW_TIME object.

Chapter 29 - UIW_TIME 599

• timein is a pointer to a ZIL_TIME object. Its value will be used as the initial value.

• rangein is a string that specifies the valid time ranges. A range consists of a
minimum value, a maximum value, and the values in between. For example, if a
range of "1:30..2:30" is specified, the UIW_TIME class object will only accept those
time values that fall between one-thirty and two-thirty, inclusive. Open-ended ranges
can be specified by leaving the minimum or maximum value off. For example, a
range of "2:30.." will allow all times that are two-thirty or thereafter. Multiple,
disjoint ranges can be specified by separating the individual ranges with a slash (i.e.,
'/'). For example, "l:30..2:30/3:30.." will accept all times between one-thirty and
two-thirty and all times after three-thirty. If range is NULL, any time within the
absolute range is accepted. This string is copied by the UIW_TIME class object to
the range member variable.

• tmFlagsin describes how the time should display and interpret the time information.
The following flags (declared in UI_GEN.HPP) control the general presentation of
a UIW_TIME class object:

600 OpenZinc Application Framework—Programmer's Reference Volume 2

TMF_NO_SEPARATOR—Does not place a
separator between time information.

TMF_SECONDS—Formats the time with a
seconds value.

TMF_SYSTEM—Sets the time value according
to the system time.

TMF_TWELVE_HOUR—Formats the time
using a 12 hour format, regardless of the default
country information.

TMF_TWENTY_FOUR_HOUR—Formats the
time using a 24 hour format, regardless of the
default country information.

TMF_UPPER_CASE—Converts the time to
upper-case.

TMF_ZERO_FILL—Forces the hour, minute
and second values to be zero filled when their
values are less than 10.

• woFlagsin are flags (common to all window objects) that determine the general
operation of the time object. The following flags (declared in UI_WIN.HPP) control
the general presentation of, and interaction with, a UIW_TIME class object:

WOF_AUTO_CLEAR—Automatically marks the entire buffer if the end-user
tabs to the field from another object. If the user then enters data (without first
having pressed any movement or editing keys) the entire field will be replaced.
This flag is set by default in the constructor.

WOF_BORDER—Draws a border around the object. The graphical border's
appearance will depend on the operating system used, and, if in DOS, on the
graphics style being used. In text mode, a border may or may not be drawn,
depending on the text style being used. See "Appendix A—Support
Definitions" in this manual for information on changing DOS graphics mode
styles and text mode styles. This flag is set by default in the constructor.

WOF_INVALID—Sets the initial status of the field to be "invalid." Invalid
entries fit in the absolute range determined by the object type but do not fulfill

1200
130000

12 : 00 : 05 a.m.
1:13:25
16:00:00

12:00 : 05 a.m.
1:13 :25
16:00:00

12:00 a.m.
1 : 0 0 p.m.
5:00 p.m.

12 : 00
13 : 00
17:00

12:00 P.M.
1:00 A.M.

01:10 a.m
13:05:03
01:01 p.m.

Chapter 29 - UIW_TIME 601

all the requirements specified by the program. For example, a time may initially
be set to 1:30, but the final time, edited by the end-user, must be in the range
"6:30..7:30." The initial time in this example fits the absolute range
requirements of a UIW_TIME class object but does not fit into the specified
range. By denoting the field as invalid, you force the user to enter an acceptable
value.

WOF_JUSTIFY_CENTER—Center-justifies the data within the displayed field.

WOF_JUSTIFY_RIGHT—Right-justifies the data within the displayed field.

WOF_MINICELL—Causes the position and size values that were passed into
the constructor to be interpreted as minicells. A minicell is a fraction the size
of a normal cell. Greater precision in object placement is achieved by specifying
an object's position in minicell coordinates. A minicell is l/10th the size of a
normal cell by default.

WOF_NO_ALLOCATE_DATA—Prevents the object from allocating a buffer
to store the data. If this flag is set, the programmer is responsible for allocating
the memory for the data. The programmer is also responsible for deallocating
that memory when it is no longer needed.

WOF_NO_FLAGS—Does not associate any special window flags with the
object. Setting this flag left-justifies the data. This flag should not be used in
conjunction with any other WOF flags.

WOF_NON_FIELD_REGION—Causes the object to ignore its position and
size parameters and use the remaining available space in its parent object.

WOF_NON_SELECTABLE—Prevents the object from being selected. If this
flag is set, the user will not be able to position on nor edit the time information.
Typically, the field will be drawn in such a manner as to appear non-selectable
(e.g., it may appear lighter than a selectable field).

WOF_SUPPORT_OBJECT—Causes the object to be placed in the parent
object's support list. The support list is reserved for objects that are not
displayed as part of the user region of the window. Care should be used when
setting this flag on an object that does not use it by default as undesirable effects
may occur. This flag generally should not be used by the programmer.

WOF_UNANSWERED—Sets the initial status of the field to be "unanswered."
An unanswered field is displayed as an empty field.

602 OpenZinc Application Framework—Programmer's Reference Volume 2

WOF_VIEW_ONLY—Prevents the object from being edited. However, the
object may become current and the user may scroll through the data, mark it, and
copy it.

• userFunctionin is a programmer defined function that will be called by the library at
certain points in the user's interaction with an object. The user function will be
called by the library when:

1—the user moves onto the field,

2—the <ENTER> key is pressed while the field is current or, if the field is in
a list, the mouse is clicked on it, or

3—the user moves to a different field in the window or to a different window.

Because the user function is called at these times, the programmer can do data
validation or any other type of necessary operation. The definition of the
userFunction is as follows:

EVENT_TYPE FunctionName(UI_WINDOW_OBJECT *object,
UI_EVENT &event, EVENT_TYPE ccode);

returnValueout indicates if an error has occurred. returnValue should be 0 if the
no error occurred. Otherwise, the programmer should call the error system with
an appropriate error message and return -1.

objectin is a pointer to the object for which the user function is being called.
This argument must be typecast by the programmer if class-specific members
need to be accessed.

eventin is the run-time message passed to the object.

ccodein is the logical or system code that caused the user function to be called.
This code (declared in UI_WIN.HPP) will be one of the following constant
values:

L_SELECT—The <ENTER> key was pressed while the field was current
or, if the field is in a list, the mouse was clicked on the field.

S_CURRENT—The object just received focus because the user moved to
it from another field or window. This code is sent before any editing
operations are permitted.

Chapter 29 - UIW_TIME 603

S_NON_CURRENT—The object just lost focus because the user moved to
another field or window.

NOTE: If a user function is associated with the object, Validate() must be called
explicitly from within userFunction if range checking is desired.

Example
#include <ui_win.hpp>

ExampleFunction(UI__WINDOW_MANAGER *windowManager) {
ZIL_DATE date; // system date
ZIL_TIME time; // system time

// Create a window with a date and time field.
UIW_WINDOW *window = UIW_WINDOW::Generic(0, 0, 45, 8, "Window");
*window

+ new UIW_PROMPT(2, 1, "Date..")
+ new UIW_DATE(9, 1, 20, &date, ZIL_NULLP(ZIL_ICHAR),

DTF_ALPHA_MONTH | DTF_SYSTEM)
+ new UIW_PROMPT(2, 3, "Time..")
+ new UIW_TIME(9, 3, 20, atime, ZIL_NULLP(ZIL_ICHAR), TMF_SECONDS);

// The time object will automatically be destroyed when the window
// is destroyed.

}

UIW_TI M E::~UIW_TIME

Syntax
#include <ui_win.hpp>

virtual ~UIW_TIME(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

604 OpenZinc Application Framework—Programmer's Reference Volume 2

Remarks
This virtual destructor destroys the class information associated with the UIW_TIME
object.

UIW_TIME::ClassName

Syntax
#include <ui_win.hpp>

virtual ZIL_ICHAR *ClassName(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks

This virtual function returns the object's class name.

• returnValueout is a pointer to _className.

UIW_TIME::DataGet

Syntax

#include <ui_win.hpp>

ZIL_TIME *DataGet(void);

Chapter 29 - UIW_TIME 605

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function gets the current time information associated with the UIW_TIME class
object.

• returnValueout is a pointer to a ZIL_TIME object containing the current time value.

Example
#include <ui_win.hpp>

ExampleFunction(UIW_TIME *timeObject) {
ZIL_TIME *time = timeObject->DataGet();

}

UIW_TI ME;: DataSet

Syntax

#include <ui_win.hpp>

void DataSet(ZIL_TIME *time);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows
• Macintosh • OSF/Motif • Curses

• OS/2
• NEXTSTEP

606 OpenZinc Application Framework—Programmer's Reference Volume 2

Remarks
This function assigns a new value to the UIW_TIME object and redisplays the field. If
no value is passed in (i.e., value is NULL), the field will be redrawn.

• valuein is a pointer to the new time. If the WOF_NO_ALLOCATE_DATA flag is
set, this argument must be a ZIL_TIME, allocated by the programmer, that is not
destroyed until the UIW_TIME class object is destroyed. Otherwise, the information
associated with this argument is copied by the UIW_TIME class object. If this
argument is NULL, no time information is changed, but the time field is redisplayed.

Example
#include <ui_win.hpp>

ExampleFunction(UIW_TIME *time) {

ZIL_TIME timelnfo(12, 0, 30);
time->DataSet(fctimelnfo);

}

UIW_TIME::Event

Syntax
#include <ui_win.hpp>

virtual EVENT_TYPE Event(const UI_EVENT &event);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function processes run-time messages sent to the time object. It is declared virtual
so that any derived time class can override its default operation.

Chapter 29 - UIW_TIME 607

• returnValueout indicates how event was processed. If the event is processed
successfully, the function returns the logical type of event that was interpreted from
event. If the event could not be processed, S_UNKNOWN is returned.

• eventin contains a run-time message for the time object. The type of operation
performed depends on the interpretation of the event. The following logical events
are processed by Event():

L_SELECT—Indicates that the object has been selected. The selection may be
the result of a mouse click or a keyboard action.

S_CREATE—Causes the object to create itself. The object will calculate its
position and size and, if necessary, will register itself with the operating system.
This message is sent by the Window Manager when a window is attached to it
to cause the window and all the objects attached to the window to determine
their positions.

S_NON_CURRENT—Indicates that the object has just become non-current.
This message is received when the user moves to another field or window.

All other events are passed by Event() to UIW_STRING::Event() for processing.

UIW_TIME::lnformation

Syntax
#include <ui_win.hpp>

virtual void *Information(ZIL_INFO_REQUEST request, void *data,
ZIL_OBJECTID objectID = ID_DEFAULT);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

608 OpenZinc Application Framework—Programmer's Reference Volume 2

Remarks
This function allows OpenZinc Application Framework objects and programmer functions to
get or modify specified information about an object.

• returnValueout is a pointer to the return data that was requested. The type of the
return data depends on the request. If the request did not require the return of
information, this value is NULL.

• requestin is a request to get or set information associated with the object. The
following requests (defined in UI_WIN.HPP) are recognized by the time object:

I_CHANGED_FLAGS—Informs the object that the programmer has changed
some flags associated with the object and that the object should update itself
accordingly. This request should be sent after changing an object's flags,
particularly if the new flag settings will change the visual appearance of the
object.

I_CLEAR_FLAGS—Clears the current flag settings for the object. If this
request is sent, data should be a pointer to a variable of type UIF_FLAGS that
contains the flags to be cleared, and objectID should indicate the type of object
with which the flags are associated. For example, if the programmer wishes to
clear the WOF_FLAGS of an object, objectID should be ID_WINDOW_-
OBJECT. If the TMF_FLAGS are to be cleared, objectID should be ID_TIME.
This allows the object to process the request at the proper level. This request
only clears those flags that are passed in; it does not simply clear the entire field.

I_GET_FLAGS—Requests the current flag settings for the object. If this
request is sent, data should be a pointer to a variable of type UIF_FLAGS, and
objectID should indicate the type of object with which the flags are associated.
For example, if the programmer wishes to obtain the WOF_FLAGS of an object,
objectID should be ID_WINDOW_OBJECT. If the TMF_FLAGS are desired,
objectID should be ID_TIME. This allows the object to process the request at
the proper level.

I_GET_VALUE—Gets the current value for the object. If this request is sent,
data should be a pointer to ZIL_TIME. If data is NULL returnValue will return
a pointer to ZIL_TIME.

I_INITIALIZE_CLASS—Causes the object to initialize any basic information
that does not require a knowledge of its parent or sibling objects. This request
is sent from the constructor of the object.

Chapter 29 - UIW_TIME 609

I_SET_FLAGS—Sets the current flag settings for the object. If this request is
sent, data should be a pointer to a variable of type UIF_FLAGS that contains the
flags to be set, and objectID should indicate the type of object with which the
flags are associated. For example, if the programmer wishes to set the WOF_-
FLAGS of an object, objectID should be ID_WINDOW_OB JECT. If the TMF_-
FLAGS are to be set, objectID should be ID_TIME. This allows the object to
process the request at the proper level. This request only sets those flags that are
passed in; it does not clear any flags that are already set.

I_SET_VALUE—Sets the current value for the object. If this request is sent,
data should be a pointer to a ZIL_TIME that contains the value to be set.

All other requests are passed by Information() to UIW_STRING::Information()
for processing.

• datain/out is used to provide information to the function or to receive the information
requested, depending on the type of request. In general, this must be space allocated
by the programmer.

• objectIDin is a ZIL_OBJECTID that specifies which type of object the request is
intended for. Because the Information() function is virtual, it is possible for an
object to be able to handle a request at more than one level of its inheritance
hierarchy. objectID removes the ambiguity by specifying which level of an object's
hierarchy should process the request. If no value is provided for objectID, the object
will attempt to interpret the request with the objectID of the actual object type.

Example
#include <ui_win.hpp>

ExampleFunction()
{

time->InfoCTiiation(I_SET_TEXT, "12 : 00") ;

woFlags flags = WOF_BORDER;
time->information(I_SET_FLAGS, &flags) ;

}

610 OpenZinc Application Framework—Programmer's Reference Volume 2

UIW_TIME::SetLanguage

Syntax
#include <ui_win.hpp>

void SetLanguage(const ZIL_ICHAR *languageName);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function sets the language to be used by the object. The string translations for the
object will be loaded and the object's myLanguage member will be updated to point to
the new ZIL_LANGUAGE object. By default, the object uses the language identified in
the LANG_DEF.CPP file, which compiles into the library. (If a different default
language is desired, simply copy a LANG_<ISO>.CPP file from the OpenZinc\SOURCE\-
INTL directory to the \OpenZinc\SOURCE directory, and rename it to LANG_DEF.CPP
before compiling the library.) The language translations are loaded from the I18N.DAT
file, so it must be shipped with your application.

• languageNamein is the two-letter ISO language code identifying which language the
object should use.

UIW_TIME::Validate

Syntax
#include <ui_win.hpp>

virtual int Validate(int processError = TRUE);

Chapter 29 - UIW_TIME 611

Portability
This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics • Windows
• OSF/Motif • Curses

• OS/2
• NEXTSTEP

Remarks
This function is used to validate objects. When an object receives the S_CURRENT or
S_NON_CURRENT messages, it calls Validate() to check if the value entered is valid.
However, if a user function is associated with the object, Validate() must be called
explicitly from the user function if range checking is desired. The value is invalid if it
is not within the absolute range of the object or if it is not within a range specified by the
range member variable.

• returnValueout indicates the result of the validation. The possible values for
returnValue are:

TMI_GREATER_THAN_RANGE—The time was greater than the maximum
value of a negatively open-ended range.

TMI_INVALID—The time was invalid or was in an invalid format.

TMI_LESS_THAN_RANGE—The time was less than the minimum value of
a positively open-ended range.

TMI_OK—The time was successfully imported.

TMI_OUT_OF_RANGE—The time was out of the valid range for times.

TMI_VALUE_MISSING—All of the required field values were not present.

• processErrorin determines whether Validate() should call UIJERRORJSYSTEM::-
ReportError() if an error occurs. If processError is TRUE, ReportError() is
called. Otherwise, the error system is not called.

Example
#include <ui_win.hpp>

EVENT_TYPE TimeUserFunction(UI_WINDOW_OBJECT *object, UI_EVENT &,
EVENT_TYPE ccode)

612 OpenZinc Application Framework—Programmer's Reference Volume 2

{
if (ccode != S_NON_CURRENT)

return (ccode);

// Do specific validation.
ZIL_TIME currentTime;
ZIL_TIME *time = ((UIW_TIME *)object)->DataGet();

// Call the default Validate function to check for valid time,
int valid = object->Validate(TRUE);

// Call error system if the time entered is later than the system time.
if (valid == TMI_OK && currentTime < *time) {

valid = TMI_INVALID;
ZIL_ICHAR timeString[64];
currentTime.Export(timeString, TMF_NO_FLAGS);
object->errorSystem->ReportError(object->windowManager, WOS_NO_STATUS,

"The time must be before %s.", timeString);
}
// Return error status.
if (valid == TMI_OK)

return (0);
else

return (-1);

void ExampleFunction(UI_WINDOW_MANAGER *windowManager) {
UIW_WINDOW *window = UIW_WINDOW::Generic(0, 0, 45, 8, "VCR Control");
*window

+ new UIW_PROMPT(2, 1, "Start time:")
+ new UIW_TIME(12, 1, 20, &ZIL_TIME(), NULL, TMF_NO_FLAGS,

WOF_BORDER | WOF_AUTO_CLEAR, TimeUserFunction)
+ new UIW_PROMPT(2, 3, "End time:")
+ new UIW_TIME(12, 3, 20, &ZIL_TIME(), NULL, TMF_NO_FLAGS,

WOF_BORDER | WOF_AUTO_CLEAR, TimeUserFunction);
*windowManager + window;

Storage Members

This section describes those class members that are used for storage purposes.

UIW_TIME::UIW_TIME

Syntax
#include <ui_win.hpp>

UIW_TIME(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object,
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

Chapter 29 - UIW_TIME 613

Portability
This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics • Windows
• OSF/Motif • Curses

• OS/2
• NEXTSTEP

Remarks
This advanced constructor creates a new UIW_TIME by loading the object from a data
file. Typically, the programmer does not need to use this constructor. If a time object
is stored in a data file it is usually stored as part of a UIW_WINDOW and will be loaded
when the window is loaded.

• namein is the name of the object to be loaded.

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT::objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT::userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume |. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

614 OpenZinc Application Framework—Programmer's Reference Volume 2

UIW_TIME::Load

Syntax
#include <ui_win.hpp>

virtual void Load(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced function is used to load a UIW_TIME from a persistent object data file.
It is called by the persistent constructor and is typically not used by the programmer.

• namein is the name of the object to be loaded.

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT:.objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

Chapter 29 - UIW_TIME 615

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT::userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

UIW_TIME::New

Syntax
#include <ui_win.hpp>

static UI_WINDOW_OBJECT *New(const ZIL_ICHAR *name,
ZIL_STORAGE_READ_ONLY *file =

ZIL_NULLP(ZIL_STORAGE_READ_ONLY),
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY),
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced function is used to load a persistent object from a data file. This function
is a static class member so that its address can be placed in a table used by the library to
load persistent objects from a data file.

NOTE: The application must first create a display if objects are to be loaded from a data
file.

• namein is the name of the object to be loaded.

616 OpenZinc Application Framework—Programmer's Reference Volume 2

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY'' of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT::objectTable in "Chapter 43—UIJWIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UIJWINDOWJOB JECT: .userTable in "Chapter 43—UI_WINDOW.-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

UIW_TIME::NewFunction

Syntax
#include <ui_win.hpp>

virtual ZIL_NEW_FUNCTION NewFunction(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Chapter 29 - UIW_TIME 617

Remarks
This virtual function returns a pointer to the object's New() function.

• returnValueout is a pointer to the object's New() function.

UIW_TIME::Store

Syntax
#include <ui_win.hpp>

virtual void Store(const ZIL_ICHAR *name, ZIL_STORAGE *file,
ZIL_STORAGE_OBJECT *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced function is used to write an object to a data file.

• namein is the name of the object to be stored.

• filein is a pointer to the ZIL_STORAGE where the persistent object will be stored.
For more information on persistent object files, see "Chapter 66—ZIL_STORAGE"
of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT where the persistent object
information will be stored. This must be allocated by the programmer. For more
information on loading persistent objects, see "Chapter 68—ZIL_STORAGE_-
OBJECT" of Programmer's Reference Volume 1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see

618 OpenZinc Application Framework—Programmer's Reference Volume 2

the description of UI_WINDOW_OBJECT:.objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT:. userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

Chapter 29 - UIW_TIME 619

OpenZinc Application Framework—Programmer's Reference Volume 2 620

CHAPTER 30 - UIW_TITLE

The UIW_TITLE class is used to display the title of a window or to allow movement of
the window with the mouse. The window can also be maximized by double-clicking on
the title with the mouse, or if the window is already maximized, the window can be
restored to its original size by double-clicking on it. The figure below shows a graphical
implementation of a window with a UIW_TITLE class object (the bar with the "Generic
Window" text):

NOTE: The Macintosh does not have the concept of maximizing or restoring windows.
Because of this, double-clicking on a title bar will not perform these tasks in a Macintosh
application built with OpenZinc. OpenZinc will ignore the double-click and no action will be
performed.

The UIW_TITLE class is declared in UI_WIN.HPP. Its public and protected members
are:

class ZIL_EXPORT_CLASS UIW_TITLE : public UIW_BUTTON {
public:

static ZIL_ICHAR _className[];

UIW_TITLE(ZIL_ICHAR *text, WOF_FLAGS woFlags = WOF_BORDER |
WOF_JUSTIFY_CENTER);

virtual ~UIW_TITLE(void);
virtual ZIL_ICHAR *ClassName(void);
ZIL_ICHAR *DataGet(void);
void DataSet(ZIL_ICHAR *text);
virtual EVENT_TYPE Event (const UI_EVENT Seventh-
virtual void information(ZIL_INFO_REQUEST request, void *data,

ZIL_OBJECTID objectID = ID_DEFAULT);

Chapter 30 - UIW_TITLE 621

#if defined (ZIL_LOAD)
virtual ZIL_NEW_FUNCTION NewFunction(void);
static UI_WINDOW_OBJECT *New(const ZIL_ICHAR *name,

ZIL_STORAGE_READ_ONLY *file = ZIL_NULLP(ZIL_STORAGE_READ_ONLY),
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY),
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

UIW_TITLE(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object,
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

virtual void Load(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

#endif
#if defined(ZIL_STORE)

virtual void Store(const ZIL_ICHAR *name, ZIL_STORAGE *file,
ZIL_STORAGE_OBJECT *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

#endif
} ;

General Members

This section describes those members that are used for general purposes.

_className contains a string identifying the class. The string is always the same
name as the class, is always in English, and never changes. For example, for the
UIW_TITLE class, _className is "UIW_TITLE."

UIW_TITLE::UIW_TITLE

Syntax
#include <ui_win.hpp>

UIW_TITLE(ZIL_ICHAR "text, WOF_FLAGS woFlags = WOF_BORDER |
WOF_JUSTIFY_CENTER);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

622 OpenZinc Application Framework—Programmer's Reference Volume 2

Remarks
This constructor creates a new UIW_TITLE class object.

• textin is the text to display in the title bar.

• woFlagsin are flags (common to all window objects) that define the operation of the
UIW_TITLE class. The following flags (declared in UI_WIN.HPP) affect the
operation of the UIW_TITLE class object:

WOF_BORDER—Draws a border around the object. The graphical border's
appearance will depend on the operating system used, and, if in DOS, on the
graphics style being used. In text mode, a border may or may not be drawn,
depending on the text style being used. See "Appendix A—Support
Definitions" in this manual for information on changing DOS graphics mode
styles and text mode styles. This flag is set by default in the constructor.

WOF_JUSTIFY_CENTER—Center-justifies the data within the displayed field.
This flag is set by default in the constructor. This flag may have no effect in
some operating systems (e.g., OS/2) as the operating system controls where the
text appears in the title bar.

WOF_JUSTIFY_RIGHT—Right-justifies the data within the displayed field.
This flag may have no effect in some operating systems (e.g., OS/2) as the
operating system controls where the text appears in the title bar.

WOF_NO_ALLOCATE_DATA—Prevents the object from allocating a buffer
to store the data. If this flag is set, the programmer is responsible for allocating
the memory for the data. The programmer is also responsible for deallocating
that memory when it is no longer needed.

WOF_NO_FLAGS—Does not associate any special window flags with the
object. Setting this flag left-justifies the data. This flag should not be used in
conjunction with any other WOF flags.

The title bar object is always positioned along the top edge of the parent window between
the system button, if one exists, and the maximize and minimize buttons, if they exist.
To ensure that the title bar is drawn correctly, it must be added after the maximize button,
minimize button and system button have been added. The following example shows the
correct order of title bar addition.

Chapter 30 - UIW_TITLE 623

Example
#include <ui_win.hpp>

ExampleFunction(UI_WINDOW_MANAGER *windowManager) {
// Create a basic window.
UIW_WINDOW *window = new UIW_WINDOW(0, 0, 40, 10)
*window

+ new UIW_BORDER
+ new UIW_MAXIMIZE_BUTTON
+ new UIW_MINIMIZE_BUTTON
+ new UIW_SYSTEM_BUTTON
+ new UIW_TITLE("Window 1");

*windowManager + window;

}

// The title object will automatically be destroyed when the window
// is destroyed.

UIW TITLE::~UIW TITLE

Syntax

#include <ui_win.hpp>

virtual ~UIW_TITLE(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This virtual destructor destroys the class information associated with the UIW_TITLE
object.

624 OpenZinc Application Framework—Programmer's Reference Volume 2

UIW TITLE::ClassName

Syntax
#include <ui_win.hpp>

virtual ZIL_ICHAR *ClassName(void);

Portability
This function is available on the following environments:

Remarks

This virtual function returns the object's class name.

• returnValueout is a pointer to _className.

UIW TITLE::DataGet

Syntax

#include <ui_win.hpp>

ZIL_ICHAR *DataGet(void);

Portability
This function is available on the following environments:

Remarks
This function is used to return the text information associated with the title object.

Chapter 30 - UIW_TITLE 625

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

• returnValueout is a pointer to the text information associated with the title.

Example
#include <ui_win.hpp>

ExampleFunction(UIW_TITLE *title) {
ZIL_ICHAR *titleText = title->DataGet();

}

UIW_TITLE::DataSet

Syntax

#include <ui_win.hpp>

void DataSet(ZIL_ICHAR *text);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows
• Macintosh • OSF/Motif • Curses

Remarks
This function is used to set the text information associated with the title.

• textin is a pointer to the new text information to be displayed on the title bar.

Example
#include <ui_win.hpp>

ExampleFunction(UIW_TITLE *title) {

• OS/2
• NEXTSTEP

626 OpenZinc Application Framework—Programmer's Reference Volume 2

title->DataSet("Error Window");
}

UIW_TITLE;: Event

Syntax
#include <ui_win.hpp>

virtual EVENT_TYPE Event(const UI_EVENT &event);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function processes run-time messages sent to the title bar object. It is declared
virtual so that any derived title bar class can override its default operation.

• returnValueout indicates how event was processed. If the event is processed
successfully, the function returns the logical type of event that was interpreted from
event. If the event could not be processed, S_UNKNOWN is returned.

• eventin contains a run-time message for the title bar object. The type of operation
performed depends on the interpretation of the event. The following logical events
are processed by Event():

L_BEGIN_SELECT—Indicates that the end-user began the selection of the
object by pressing the mouse button down while on the object.

S_CHANGED—Causes the object to recalculate its position and size. When a
window is moved or sized, the objects on the window will need to recalculate
their positions. This message informs an object that it has changed and that it
should update itself.

S_CREATE—Causes the object to create itself. The object will calculate its
position and size and, if necessary, will register itself with the operating system.

Chapter 30 - UIW_TITLE 627

This message is sent by the Window Manager when a window is attached to it
to cause the window and all the objects attached to the window to determine
their positions.

S_DISPLAY_ACTIVE—Causes the object to draw itself to appear active. An
active object is one that is on the active (i.e., current) window. Most objects do
not display differently whether they are active or inactive. The UIW_TITLE and
UIW_BORDER class objects usually do draw differently if they are active than
if they are inactive. This is done to allow the end-user to easily distinguish the
current window from the rest of the windows. An active object should not be
confused with a current object. An object is active if it is on the active window.
However, it may not be the current object on the window.

The region that needs to be redisplayed is passed in the UI_REGION portion of
the UI_EVENT structure when this message is sent. The object only needs to
redisplay when the region passed by the event overlaps the region of the object.
This message is sent by a UIW_WINDOW to all the non-current, active objects
attached to it.

S_DISPLAY_INACTIVE—Causes the object to draw itself to appear inactive.
An inactive object is one that is not on the active (i.e., current) window. Most
objects do not display differently whether they are inactive or active. The
UIW_TITLE and UIW_BORDER class objects usually do draw differently if
they are inactive than if they are active. This is done to allow the end-user to
easily distinguish the current window from the rest of the windows.

The region that needs to be redisplayed is passed in the UI_REGION portion of
the UI_EVENT structure when this message is sent. The object only needs to
redisplay when the region passed with the event overlaps the region of the object.
This message is sent by a UIW_WINDOW to all the objects attached to it.

S_INITIALIZE—Causes the object to initialize any necessary information that
may require a knowledge of its parent or siblings. When a window is added to
the Window Manager, the Window Manager sends this message to cause the
window and all the objects attached to the window to initialize themselves.

S_REDISPLAY—Causes the object to redraw.

All other events are passed by Event() to UIW_BUTTON::Event() for processing.

NOTE: Because most graphical operating systems already process their own events
related to this object, the messages listed above may not be handled in every
environment. Wherever possible, OpenZinc allows the operating system to process its own

628 OpenZinc Application Framework—Programmer's Reference Volume 2

messages so that memory use and speed will be as efficient as possible. In these
situations, the system event can be trapped in a derived Event() function.

UIW_TITLE::lnformation

Syntax
#include <ui_win.hpp>

virtual void *Information(ZIL_INFO_REQUEST request, void "data,
ZIL_OBJECTID objectID = ID_DEFAULT);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function allows OpenZinc Application Framework objects and programmer functions to
get or modify specified information about an object.

• returnValueout is a pointer to the return data that was requested. The type of the
return data depends on the request. If the request did not require the return of
information, this value is NULL.

• requestin is a request to get or set information associated with the object. The
following requests (defined in UI_WIN.HPP) are recognized by the Window
Manager:

I_CHANGED_FLAGS—Informs the object that the programmer has changed
some flags associated with the object and that the object should update itself
accordingly. This request should be sent after changing an object's flags,
particularly if the new flag settings will change the visual appearance of the
object.

I_COPY_TEXT—Copies the text associated with the object into a buffer
provided by the programmer. If this request is sent, data must be the address of

Chapter 30 - UIW_TITLE 629

a buffer where the string's text will be copied. This buffer must be large enough
to contain all of the characters associated with the title and the terminating
NULL character.

I_GET_TEXT—Returns a pointer to the text associated with the object. If this
request is sent, data should be a doubly-indirected pointer to ZIL_ICHAR. This
request does not copy the text into a new buffer.

I_INITIALIZE_CLASS—Causes the object to initialize any basic information
that does not require a knowledge of its parent or sibling objects. This request
is sent from the constructor of the object.

I_SET_TEXT—Sets the text associated with the object. This request will also
redisplay the object with the new text, data should be a pointer to the new text.
Also, the Information() function of the window to which the title bar is
attached can be called with the I_SET_TEXT request. This request will be sent
to the title. This will eliminate the necessity to obtain a pointer to the title bar.

All other requests are passed by Information() to UIW_BUTTON::Information()
for processing.

• datain/out is used to provide information to the function or to receive the information
requested, depending on the type of request. In general, this must be space allocated
by the programmer.

• objectIDin is a ZIL_OBJECTID that specifies which type of object the request is
intended for. Because the Information() function is virtual, it is possible for an
object to be able to handle a request at more than one level of its inheritance
hierarchy. objectID removes the ambiguity by specifying which level of an object's
hierarchy should process the request. If no value is provided for objectID, the object
will attempt to interpret the request with the objectID of the actual object type.

Example
#include <ui_win.hpp>
ExampleFunction() {

title-information(I_SET_TEXT, "Example 2")

630 OpenZinc Application Framework—Programmer's Reference Volume 2

Storage Members

This section describes those class members that are used for storage purposes.

UIW_TITLE::UIW_TITLE

Syntax
#include <ui_win.hpp>

UIW_TITLE(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object,
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced constructor creates a new UIW JTTLE by loading the object from a data
file. Typically, the programmer does not need to use this constructor. If a title bar is
stored in a data file it is usually stored as part of a UIW_WINDOW and will be loaded
when the window is loaded.

• namein is the name of the object to be loaded.

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter

Chapter 30 - UIW_TITLE 631

69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT: .objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT::userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

UIW_TITLE::Load

Syntax
#include <ui_win.hpp>

virtual void Load(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced function is used to load a UIW_TITLE from a persistent object data file.
It is called by the persistent constructor and is typically not used by the programmer.

• namein is the name of the object to be loaded.

632 OpenZinc Application Framework—Programmer's Reference Volume 2

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT::objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT: .userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

UIW TITLE::New

Syntax
#include <ui_win.hpp>

static UI_WINDOW_OBJECT *New(const ZIL_ICHAR *name,
ZIL_STORAGE_READ_ONLY *file =

ZIL_NULLP(ZIL_STORAGE_READ_ONLY),
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY),
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

Chapter 30 - UIW_TITLE 633

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced function is used to load a persistent object from a data file. This function
is a static class member so that its address can be placed in a table used by the library to
load persistent objects from a data file.

NOTE: The application must first create a display if objects are to be loaded from a data
file.

• namein is the name of the object to be loaded.

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablejn is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT:-.objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT:. userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

634 OpenZinc Application Framework—Programmer's Reference Volume 2

UIW TITLE::NewFunction

Syntax
#include <ui_win.hpp>

virtual ZIL_NEW_FUNCTION NewFunction(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks

This virtual function returns a pointer to the object's New() function.

• returnValueout is a pointer to the object's New() function.

UIW_TITLE::Store

Syntax
#include <ui_win.hpp>

virtual void Store(const ZIL_ICHAR *name, ZIL_STORAGE *file,
ZIL_STORAGE_OBJECT *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Chapter 30 - UIW_TITLE 635

Remarks
This advanced function is used to write an object to a data file.

• namein is the name of the object to be stored.

• filein is a pointer to the ZIL_STORAGE where the persistent object will be stored.
For more information on persistent object files, see "Chapter 66—ZIL_STORAGE"
of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT where the persistent object
information will be stored. This must be allocated by the programmer. For more
information on loading persistent objects, see "Chapter 68—ZIL_STORAGE_-
OBJECT" of Programmer's Reference Volume 1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT:.objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT:. userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

636 OpenZinc Application Framework—Programmer's Reference Volume 2

CHAPTER 31 - UIW_TOOL_BAR

The UIW_TOOL_BAR class object is used as a controlling structure for a set of window
objects. Typically, a tool bar is used to provide a method for quickly selecting an option
or action that is frequently chosen in an application. Objects on a tool bar may be
editable, if desired. A tool bar is positioned along the top of the window. If the window
also contains a pull-down menu, the tool bar will be placed directly below the pull-down
menu. Multiple tool bars may be added to a window. Although it is not strictly allowed
by the MDI specification, a tool bar may also be added to an MDI parent, since many
applications do it anyway. The figure below shows a graphical implementation of a
UIW_TOOL_BAR class object with various window objects:

The UIW_TOOL_BAR class is declared in UI_WIN.HPP. Its public and protected
members are:

class ZIL_EXPORT_CLASS UIW_TOOL_BAR : public UIW_WINDOW {
public:

static ZIL_ICHAR _className[];

UIW_TOOL_BAR(int left, int top, int width, int height,
WNF_FLAGS wnFlags = WNF_NO_FLAGS,
WOF_FLAGS woFlags = WOF_BORDER | WOF_NON_FIELD_REGION,
WOAF_FLAGS woAdvancedFlags = WOAF_NO_FLAGS);

virtual ~UIW_TOOL_BAR(void);
virtual ZIL_ICHAR *ClassName(void);
virtual EVENT_TYPE Event(const UI_EVENT &event);
virtual void information(ZIL_INFO_REQUEST request, void *data,

ZIL_OBJECTID objectID = ID_DEFAULT);

#if defined(ZIL_LOAD)
virtual ZIL_NEW_FUNCTION NewFunction{void);
static UI_WINDOW_OBJECT *New(const ZIL_ICHAR *name,

Chapter 31 - UIW_TOOL_BAR 637

ZIL_STORAGE_READ_ONLY *file = ZIL_NULLP(ZIL_STORAGE_READ_ONLY),
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY),
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM) ,
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

UIW_TOOL_BAR(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object,
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

virtual void Load(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

#endif
#if defined (ZIL_STORE)

virtual void Store(const ZIL_ICHAR *name, ZIL_STORAGE *file,
ZIL_STORAGE_OBJECT *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

#endif
} ;

General Members

This section describes those members that are used for general purposes.

• _className contains a string identifying the class. The string is always the same
name as the class, is always in English, and never changes. For example, for the
UIW_TOOL_BAR class, _className is "UIW_TOOL_BAR."

UIW_TOOL_BAR::UIW_TOOL_BAR

Syntax
#include <ui_win.hpp>

UIW_TOOL_BAR(int left, int top, int width, int height,
WNF_FLAGS wnFlags = WNF_NO_FLAGS,
WOF_FLAGS woFlags = WOF_BORDER | WOF_NON_FIELD_REGION,
WOAF_FLAGS woAdvancedFlags = WOAF_NO_FLAGS);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

638 OpenZinc Application Framework—Programmer's Reference Volume 2

Remarks
This constructor creates a new UIW_TOOL_BAR class object.

• left i n and topin is the starting position of the tool bar. Typically, these values are in
cell coordinates. If the WOF_MINICELL flag is set, however, these values will be
interpreted as minicell values.

• widthin is the width of the tool bar. Typically, this value is in cell coordinates. If the
WOF_MINICELL flag is set, however, this value will be interpreted as a minicell
value.

• heightin is the height of the tool bar. Typically, this value is in cell coordinates. If
the WOF_MINICELL flag is set, however, this value will be interpreted as a minicell
value.

• wnFlagsin are flags that define the operation of the tool bar. The following flags
(declared in UI_WIN.HPP) affect the operation of a UIW_TOOL_BAR class object:

WNF_BITMAP_CHILDREN—Used to denote that some of the tool bar's sub-
objects contain bitmaps.

WNF_NO_FLAGS—Does not associate any special window flags with the tool
bar. This flag should not be used in conjunction with any other WNF flags.

WNF_NO_WRAP—Causes objects placed in the tool bar to be positioned
according to their specified coordinates. By default, objects within a tool bar are
automatically positioned so that they are edge-to-edge from left-to-right, in the
order in which they were added. If more objects are added than can fit on a
single line of the tool bar, the tool bar will wrap and place the remaining objects
on the next line. If the WNF_NO_WRAP flag is set, however, objects on the
tool bar will not be automatically positioned, but will be positioned to the
location indicated in their constructor.

WNF_SELECT_MULTIPLE—Allows more than one object to be selected at
a time. This flag must be set if check boxes are added to the tool bar.

• woFlagsin are flags (common to all window objects) that determine the general
operation of the tool bar. The following flags (declared in UI_WIN.HPP) affect the
operation of a UIW_TOOL_BAR class object:

WOF_BORDER—Draws a border around the object. The graphical border's
appearance will depend on the operating system used, and, if in DOS, on the

Chapter 31 - UIW_TOOL_BAR 639

graphics style being used. In text mode, a border may or may not be drawn,
depending on the text style being used. See "Appendix A—Support
Definitions" in this manual for information on changing DOS graphics mode
styles and text mode styles. This flag is set by default in the constructor.

WOF_MINICELL—Causes the position and size values that were passed into
the constructor to be interpreted as minicells. A minicell is a fraction the size
of a normal cell. Greater precision in object placement is achieved by specifying
an object's position in minicell coordinates. A minicell is l/10th the size of a
normal cell by default.

WOF_NO_FLAGS—Does not associate any special window flags with the
object. This flag should not be used in conjunction with any other WOF flags.
This flag is set by default in the constructor.

WOF_NON_FIELD_REGION—Causes the object to ignore its position and
size parameters and use the remaining available space in its parent object. The
tool bar will take up the full width of the window but will only be as tall as
required to display all the objects attached to the tool bar.

WOF_NON_SELECTABLE—Prevents the object from being selected. If this
flag is set, the user will not be able to position on nor select any objects in the
tool bar. Typically, the object will be drawn in such a manner as to appear non-
selectable (e.g., it may appear lighter than a selectable field).

WOF_SUPPORT_OBJECT—Causes the object to be placed in the parent
object's support list. The support list is reserved for objects that are not
displayed as part of the user region of the window. If this flag is set on the tool
bar it will not be scrolled if the window is scrolled. Also, objects on the window
will not be allowed to overwrite the tool bar if they overlap because the window
is scrolled or sized smaller. This flag should be set if the tool bar is added to
an MDI parent window.

• woAdvancedFlagsin are flags (common to all window objects) that determine the
advanced operation of the tool bar object. The following flags (declared in UI_-
WIN.HPP) control the advanced operation of a tool bar object:

WOAF_NO_FLAGS—Does not associate any special advanced flags with the
window object. This flag should not be used in conjunction with any other
WOAF flags.

640 OpenZinc Application Framework—Programmer's Reference Volume 2

WOAF_NON_CURRENT—Prevents the object from becoming current. If this
flag is set, users will not be able to select the tool bar from the keyboard.
Objects on the tool bar may still be selected using the mouse or a hotkey, but
they will not become current.

WOAF_NORMAL_HOT_KEYS—Allows the end-user to select an option
using its hotkey by pressing the hotkey by itself, without the <Alt> key
otherwise required for selecting with a hotkey.

Example
#include <ui_win.hpp>

ExampleFunction(UI_WINDOW_MANAGER *windowManager) {
ZIL_DATE date;
ZIL_TIME time;

// Create a window with a tool bar.
UIW_WINDOW *window = new UIW_WINDOW(0, 0, 40, 10);
*window

+ new UIW_BORDER
+ new UIW_TITLE(" Sample menus ")
+ &(*new UIW_TOOL_BAR(0,0,20,2)

+ new UIW_BUTTON(0,0,10,"Button")
+ new UIW_STRING(0,0,10,"String")
+ new UIW_DATE (0, 0, 10 , Sedate)
+ new UIW_TIME(0,0,10,&t ime));

*windowManager + window;

// The tool bar will automatically be destroyed when the window
// is destroyed.

}

UIW_TOOL_BAR::~UIW_TOOL_BAR

Syntax
#include <ui_win.hpp>

virtual ~UIW_TOOL_BAR(void);

Chapter 31 - UIW_TOOL_BAR 641

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This virtual destructor destroys the class information associated with the UIW_TOOL_-
BAR object. All objects attached to the tool bar will also be destroyed.

UIW_TOOL_BAR::ClassName

Syntax

#include <ui_win.hpp>

virtual ZIL_ICHAR *ClassName(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows
• Macintosh • OSF/Motif • Curses

Remarks

This virtual function returns the object's class name.

• returnValueout is a pointer to _className.

642 OpenZinc Application Framework—Programmer's Reference Volume 2

• OS/2
• NEXTSTEP

UIW_TOOL_BAR::Event

Syntax
#include <ui_win.hpp>

virtual EVENT_TYPE Event(const UI_EVENT &event);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function processes run-time messages sent to the tool bar object. It is declared
virtual so that any derived tool bar class can override its default operation.

• returnValueout indicates how event was processed. If the event is processed
successfully, the function returns the logical type of event that was interpreted from
event. If the event could not be processed, S_UNKNOWN is returned.

• eventin contains a run-time message for the tool bar object. The type of operation
performed depends on the interpretation of the event. The following logical events
are processed by Event():

L_DOWN—Moves the focus down one object. If there is no object below the
current object, focus will "wrap" to an object at the top of the tool bar and to
the right of the current object. This message is interpreted from a keyboard
event.

L_LEFT—Moves the focus left one object. If there is no object to the left of
the current object, focus will "wrap" to an object on the right of the tool bar
and above the current object. This message is interpreted from a keyboard event.

L_RIGHT—Moves the focus right one object. If there is no object to the right
of the current object, focus will "wrap" to an object on the left of the tool bar
and below the current object. This message is interpreted from a keyboard event.

Chapter 31 - UIW_TOOL_BAR 643

L_UP—Moves the focus up one object. If there is no object above the current
object, focus will "wrap" to an object at the bottom of the tool bar and to the
left of the current object. This message is interpreted from a keyboard event.

S_ADD_OBJECT—Causes a new object to be added to the tool bar. event.data
will point to the new object to be added.

S_CHANGED—Causes the object to recalculate its position and size. When a
window is moved or sized, the objects on the window will need to recalculate
their positions. This message informs an object that it has changed and that it
should update itself.

S_CREATE—Causes the object to create itself. The object will calculate its
position and size and, if necessary, will register itself with the operating system.
This message is sent by the Window Manager when a window is attached to it
to cause the window and all the objects attached to the window to determine
their positions.

S_DISPLAY_ACTIVE—Causes the object to draw itself to appear active. An
active object is one that is on the active (i.e., current) window. Most objects do
not display differently whether they are active or inactive. An active object
should not be confused with a current object. An object is active if it is on the
active window. However, it may not be the current object on the window.

The region that needs to be redisplayed is passed in the UI_REGION portion of
the UI_EVENT structure when this message is sent. The object only needs to
redisplay when the region passed by the event overlaps the region of the object.
This message is sent by the window to all the non-current, active objects
attached to it.

S_DISPLAY_INACTIVE—Causes the object to draw itself to appear inactive.
An inactive object is one that is not on the active (i.e., current) window. Most
objects do not display differently whether they are inactive or active.

The region that needs to be redisplayed is passed in the UI_REGION portion of
the UI_EVENT structure when this message is sent. The object only needs to
redisplay when the region passed with the event overlaps the region of the object.
This message is sent by the window to all the objects attached to it.

S_MOVE—Causes the object to update its location. The distance to move is
contained in the position field of UI_EVENT. For example, an event.position.-

644 OpenZinc Application Framework—Programmer's Reference Volume 2

line of -10 and an event.position.column of 15 moves the object 10 lines up and
15 columns to the right.

S_REDISPLAY—Causes the object to redraw.

S_REGISTER_OBJECT—Causes the object to register itself with the operating
system.

All other events are passed by Event() to UIW_WINDOW::Event() for processing.

UIW_TOOL_BAR::Information

Syntax
#include <ui_win.hpp>

virtual void *Information(ZIL_INFO_REQUEST request, void *data,
ZIL_OBJECTID objectID = ID_DEFAULT);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function allows OpenZinc Application Framework objects and programmer functions to
get or modify specified information about an object.

• returnValueout is a pointer to the return data that was requested. The type of the
return data depends on the request. If the request did not require the return of
information, this value is NULL.

• requestin is a request to get or set information associated with the object. The
following requests (defined in UI_WIN.HPP) are recognized by the window:

I_CHANGED_FLAGS—Informs the object that the programmer has changed
some flags associated with the object and that the object should update itself

Chapter 31 - UIW_TOOL_BAR 645

accordingly. This request should be sent after changing an object's flags,
particularly if the new flag settings will change the visual appearance of the
object.

I_INITIALIZE_CLASS—Causes the object to initialize any basic information
that does not require a knowledge of its parent or sibling objects. This request
is sent from the constructor of the object.

All other requests are passed by Information() to UIW_WINDOW::Information()
for processing.

• datain/out is used to provide information to the function or to receive the information
requested, depending on the type of request. In general, this must be space allocated
by the programmer.

• objectIDin is a ZIL_OBJECTID that specifies which type of object the request is
intended for. Because the Information() function is virtual, it is possible for an
object to be able to handle a request at more than one level of its inheritance
hierarchy. objectID removes the ambiguity by specifying which level of an object's
hierarchy should process the request. If no value is provided for objectID, the object
will attempt to interpret the request with the objectID of the actual object type.

Storage Members

This section describes those class members that are used for storage purposes.

UIW_TOOL_BAR::UIW_TOOL_BAR

Syntax
#include <ui_win.hpp>

UIW_TOOL_BAR(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object,
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

646 OpenZinc Application Framework—Programmer's Reference Volume 2

Portability
This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics • Windows
• OSF/Motif • Curses

• OS/2
• NEXTSTEP

Remarks
This advanced constructor creates a new UIW_TOOL_BAR by loading the object from
a data file. Typically, the programmer does not need to use this constructor. If a tool bar
object is stored in a data file it is usually stored as part of a UIW_WINDOW and will be
loaded when the window is loaded.

• namein is the name of the object to be loaded.

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

• objects is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WlNDOW_OBJECT: .objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT::userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

Chapter 31 - UIW_TOOL_BAR 647

UIW_TOOL_BAR::Load

Syntax
#include <ui_win.hpp>

virtual void Load(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced function is used to load a UIW_TOOL_BAR from a persistent object data
file. It is called by the persistent constructor and is typically not used by the programmer.

• namein is the name of the object to be loaded.

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT::objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

648 OpenZinc Application Framework—Programmer's Reference Volume 2

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT:. userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

UIW_TOOL_BAR::New

Syntax
#include <ui_win.hpp>

static UI_WINDOW_OBJECT *New(const ZIL_ICHAR *name,
ZIL_STORAGE_READ_ONLY *file =

ZIL_NULLP(ZIL_STORAGE_READ_ONLY),
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY),
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced function is used to load a persistent object from a data file. This function
is a static class member so that its address can be placed in a table used by the library to
load persistent objects from a data file.

NOTE: The application must first create a display if objects are to be loaded from a data
file.

• namein is the name of the object to be loaded.

Chapter 31 - UIW_TOOL_BAR 649

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT:.objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOWJDBJECT::userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

UIW_TOOL_BAR::NewFunction

Syntax
#include <ui_win.hpp>

virtual ZIL_NEW_FUNCTION NewFunction(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

650 OpenZinc Application Framework—Programmer's Reference Volume 2

Remarks
This virtual function returns a pointer to the object's New() function.

• returnValueout is a pointer to the object's New() function.

UIW_TOOL_BAR::Store

Syntax
#include <ui_win.hpp>

virtual void Store(const ZIL_ICHAR *name, ZIL_STORAGE *file,
ZIL_STORAGE_OBJECT *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced function is used to write an object to a data file.

• namein the name of the object to be stored.

• filein is a pointer to the ZIL_STORAGE where the persistent object will be stored.
For more information on persistent object files, see "Chapter 66—ZIL_STORAGE"
of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT where the persistent object
information will be stored. This must be allocated by the programmer. For more
information on loading persistent objects, see "Chapter 68—ZIL_STORAGE_-
OBJECT" of Programmer's Reference Volume 7.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see

Chapter 31 - UIW_TOOL_BAR 651

the description of UI_WINDOW_OBJECT::objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT:. userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

652 OpenZinc Application Framework—Programmer's Reference Volume 2

CHAPTER 32 - UIW_VT_LIST

The UIW_VT_LIST class is a selection object used to present a list of objects to the end-
user. The objects can be text only or may contain a bitmap or icon. The vertical list will
position the objects in a single vertical column. A vertical scroll bar can be added to the
list to allow scrolling with the mouse. A typical use for the vertical list is to present a
list of items, perhaps file names, and to allow the end-user to select one or more of the
items. The figure below shows the graphical implementation of a UIW_VT_LIST object
with several string objects:

The UIW_VT_LIST class is declared in UI_WIN.HPP. Its public and protected members
are:

class ZIL_EXPORT_CLASS UIW_VT_LIST : public UIW_WINDOW {
public:

static ZIL_ICHAR _className[];

UIW_VT_LIST(int left, int top, int width, int height,
ZIL_COMPARE_FUNCTION compareFunction =

ZIL_NULLF(ZIL_COMPARE_FUNCTION),
WNF_FLAGS wnFlags = WNF_NO_WRAP | WNF_CONTINUE_SELECT,
WOF_FLAGS woFlags = WOF_BORDER,
WOAF_FLAGS woAdvancedFlags = WOAF_NO_FLAGS);

UIW_VT_LIST(int left, int top, int width, int height,
ZIL_COMPARE_FUNCTION compareFunction, WOF_FLAGS flagSetting,

UI_ITEM *item) ;
virtual ~UIW_VT_LIST(void);
virtual ZIL_ICHAR *ClassName(void);
virtual void Destroy(void);
virtual EVENT_TYPE Event(const UI_EVENT &event);
virtual void * Information(ZIL_INFO_REQUEST request, void *data,

ZIL_OBJECTID objectID = ID_DEFAULT);
#if defined(ZIL_MOTIF)

virtual void RegionMax(UI_WINDOW_OBJECT *object);

Chapter 17 - UIW_PULL_DOWN_ITEM 653

virtual ZIL_SCREENID TopWidget(void);
#endif

virtual void Sort(void);

#if defined (ZIL_LOAD)
virtual ZIL_NEW_FUNCTION NewFunction(void);
static UI_WINDOW_OBJECT *New(const ZIL_ICHAR *name,

ZIL_STORAGE_READ_ONLY *file = ZIL_NULLP(ZIL_STORAGE_READ_ONLY),
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY),
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

UIW_VT_LIST(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object,
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

virtual void Load(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

#endif
#if defined(ZIL_STORE)

virtual void Store(const ZIL_ICHAR *name, ZIL_STORAGE *file,
ZIL_STORAGE_OBJECT *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

#endif

// List members.
#if defined (ZIL_MACINTOSH)

UI_WINDOW_OBJECT *Add(UI_WINDOW_OBJECT *object);
UI_WINDOW_OBJECT *Subtract(UI_WINDOW_OBJECT *object);
UIW_VT_L1ST &operator+(UI_WINDOW_OBJECT *object);
UIW_VT_L1ST &operator-(UI_WINDOW_OBJECT *object);

#endif

#if defined (ZIL_MSDOS) | | defined (ZIL_CURSES)
public:

virtual EVENT_TYPE ScrollEvent(UI_EVENT &event);
#endif
} ;

General Members

This section describes those members that are used for general purposes.

_className contains a string identifying the class. The string is always the same
name as the class, is always in English, and never changes. For example, for the
UIW_VT_LIST class, _className is "UIW_VT_LIST."

654 OpenZinc Application Framework—Programmer's Reference Volume 2

UIW_VT_LIST::UIW_VT_LIST

Syntax
#include <ui_win.hpp>

UIW_VT_LIST(int left, int top, int width, int height,
ZIL_COMPARE_FUNCTION compareFunction =

ZIL_NULLF(ZIL_COMPARE_FUNCTION),
WNF.FLAGS wnFlags = WNF_NO_WRAP,
WOF_FLAGS woFlags = WOF_BORDER,
WOAF_FLAGS woAdvancedFlags = WOAF_NO_FLAGS);
or

UIW_VT_LIST(int left, int top, int width, int height,
ZIL_COMPARE_FUNCTION compareFunction, WOF_FLAGS flagSetting,
UI_ITEM "item);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks

These overloaded constructors create a new UIW_VT_LIST class object.

The first overloaded constructor creates a UIW_VT_LIST object.

• leftin and topin is the starting position of the vertical list. Typically, these values are
in cell coordinates. If the WOF_MINICELL flag is set, however, these values will
be interpreted as minicell values.

• widthin is the width of the vertical list. Typically, this value is in cell coordinates.
If the WOF_MINICELL flag is set, however, this value will be interpreted as a
minicell value.

• heightin is the height of the vertical list. Typically, this value is in cell coordinates.
If the WOF_MINICELL flag is set, however, this value will be interpreted as a
minicell value.

Chapter 32 - UIW_VT_LIST 655

• compareFunctionin is a programmer defined function that will be called by the library
when sorting the list of objects attached to the vertical list, compare Function is
called as each individual object is added and if the list is sorted explicitly by calling
the Sort() function. The objects can be sorted based on any key unique to the
object. Pointers to the objects being compared are passed to the compare Function,
so any information required to do the sorting needs to be associated with the object.
Because the objects can be of any type, even a derived type, the object pointers will
need to be typecast in the compare Function.

The definition of the compare Function is as follows:

int FunctionName(void *elementl, void *element2);

returnValueout indicates the relative ordering of the two elements. returnValue
should be negative if element 1 should be placed in front of element2, 0 if the two
elements are sorted the same or positive if element 1 should come after element2.

elementlin is a pointer to the first element to be compared. This void pointer
must be typecast according to the type of object being sorted.

element2iri is a pointer to the second element to be compared. This void pointer
must be typecast according to the type of object being sorted.

• wnFlagsin are flags that define the operation of the vertical list. The following flags
(declared in UI_WIN.HPP) affect the operation of a UIW_VT_LIST class object:

WNF_AUTO_SELECT—Causes each object in the list to be automatically
selected when it becomes current. This flag is typically used when radio buttons
are added to the vertical list.

WNF_AUTO_SORT—Causes the vertical list options to be sorted in
alphabetical order.

WNF_BITMAP_CHILDREN—Indicates that some of the objects contain
bitmaps. Setting this flag will affect the spacing of objects in the list. Normally,
objects are spaced according to a pre-determined cell height value. If this flag
is set, however, the objects will be spaced according to the actual height of the
objects. This flag should be set when adding check boxes or radio buttons to the
vertical list.

656 OpenZinc Application Framework—Programmer's Reference Volume 2

WNF_CONTINUE_SELECT—Allows the end-user to drag through the list
options with the mouse button pressed. If this flag is not set, the highlight on
the list options will not follow the dragging mouse.

WNF_NO_FLAGS—Does not associate any special window flags with the
object. This flag should not be used in conjunction with any other WNF_-
FLAGS.

WNF_NO_WRAP—Will not allow arrowing up or down to wrap from the end
of the list to the beginning or vice versa.

WNF_SELECT_MULTIPLE—Allows more than one object to be selected at
a time.

• woFlagsin are flags (common to all window objects) that determine the general
operation of the vertical list object. The following flags (declared in UI_WIN.HPP)
control the general presentation of, and interaction with, a UIW_VT_LIST class
object:

WOF_BORDER—Draws a border around the object. The graphical border's
appearance will depend on the operating system used, and, if in DOS, on the
graphics style being used. In text mode, a border may or may not be drawn,
depending on the text style being used. See "Appendix A—Support
Definitions" in this manual for information on changing DOS graphics mode
styles and text mode styles.

WOF_MINICELL—Causes the position and size values that were passed into
the constructor to be interpreted as minicells. A minicell is a fraction the size
of a normal cell. Greater precision in object placement is achieved by specifying
an object's position in minicell coordinates. A minicell is 1/1 Oth the size of a
normal cell by default.

WOF_NO_FLAGS—Does not associate any special window flags with the
object. This flag should not be used in conjunction with any other WOF flags.

WOF_NON_FIELD_REGION—Causes the object to ignore its position and
size parameters and use the remaining available space in its parent object.

WOF_NON_SELECTABLE—Prevents the object from being selected.
Typically, the object will be drawn in such a manner as to appear non-selectable
(e.g., it may appear lighter than a selectable field).

Chapter 32 - UIW_VT_LIST 657

• woAdvancedFlagsin are flags (general to all window objects) that determine the
advanced operation of the vertical list object.

WOAF_NO_FLAGS—Does not associate any special advanced flags with the
window object. This flag should not be used in conjunction with any other
WOAF flags.

WOAF_NON_CURRENT—Prevents the object from becoming current. If this
flag is set, users will not be able to select the vertical list from the keyboard.
The vertical list may still be selected using the mouse, but it will not become
current.

The second overloaded constructor creates a vertical list using a pre-defined item array.
These items are used to create UIW_STRING objects.

• leftin and topin is the starting position of the vertical list. Typically, these values are
in cell coordinates. If the WOF_MINICELL flag is set, however, these values will
be interpreted as minicell values.

• widthin is the width of the vertical list. Typically, this value is in cell coordinates.
If the WOF_MINICELL flag is set, however, this value will be interpreted as a
minicell value.

• heightin is the height of the vertical list. Typically, this value is in cell coordinates.
If the WOF_MINICELL flag is set, however, this value will be interpreted as a
minicell value.

• compareFunctionin is a programmer defined function that will be called by the library
when sorting the list of objects attached to the vertical list. For more details, see the
description of compareFunction with the first constructor.

• flagSettingin is a value that is checked against each UI_ITEM's value field. If the
item's value field is the same as flagSetting, that item is marked as selected.

• itemin is an array of UI_ITEM structures that are used to construct a set of string
items within the vertical list. For more information regarding the use of the
UI_ITEM structure, see "Chapter 18—UI_ITEM" in Programmer's Reference
Volume 1.

658 OpenZinc Application Framework—Programmer's Reference Volume 2

Example
#include <ui_win.hpp>

ExampleFunctionl(UI_WINDOW_MANAGER *windowManager) {
// Create the list box field.
UIW_VT_L1ST *listBox = new UIW_VT_LIST(10, 1, 25, 6)
*listBox

+ new UIW_STRING(0, 0, 19, "Item 1")
+ new UIW_STRING(0, 0, 19, "Item 2")
+ new UIW_STRING(0, 0, 19, "Item 3")
+ new UIW_STRING(0, 0, 19, "Item 4");

// Attach the list box to the window.
UIW_WINDOW *window = new UIW_WINDOW(0, 0, 40, 10);
*window

+ UIW_BORDER
+ new UIW_TITLE("Sample list box")
+ new UIW_PROMPT(2, 1, "List box:")
+ listBox;

*windowManager + window;

// Create the window.
UIW_WINDOW *window = new UIW_WINDOW(0, 0, 40, 10);
*window

+ UIW_BORDER
+ new UIW_TITLE("Sample list box")
+ new UIW_PROMPT(2, 1, "List box:")
+ new UIW_VT_IiIST(10, 1, 20, 6, NULL, WOF_NO_FLAGS, listBoxItems);

*windowManager + window;

// The list box will automatically be destroyed when the window
// is destroyed.

}

Chapter 32 - UIW_VT_LIST 659

// The list box will automatically be destroyed when the window
// is destroyed.

}
ExampleFunction2(UI_WINDOW_MANAGER *windowManager) {

UI_ITEM listBoxItems[] = {
{ 11, NULL, "Item 1.1", STF_NO_FLAGS },
{ 12, NULL, "Item 1.2", STF_NO_FLAGS },
{ 21, NULL, "Item 2.1", STF_NO_FLAGS },
{ 22, NULL, "Item 2.2", STF_NO_FLAGS },
{ 0, NULL, NULL, 0 }

};

UIW_VT_LIST::~UIW_VT_LIST

Syntax

#include <ui_win.hpp>

virtual ~UIW_VT_LIST(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

This virtual destructor destroys the class information associated with the UIW_VT_LIST
object. All objects attached to the vertical list will also be destroyed.

Remarks

UIW_VT_LIST::Add

Syntax
#include <ui_win.hpp>

UI_WINDOW_OBJECT *Add(UI_WINDOW_OBJECT *object);
or

UIW_VT_LIST &operator + (UI_WINDOW_OBJECT *object);

Portability
This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics • Windows
• OSF/Motif • Curses

• OS/2
• NEXTSTEP

660 OpenZinc Application Framework—Programmer's Reference Volume 2

Remarks
This function is used to add an object to the vertical list.

• returnValueout is a pointer to object if the addition was successful. Otherwise,
returnValue is NULL.

• objectin is a pointer to the object to be added to the vertical list.

The second overloaded operator adds an item to the UIW_VT_LIST. This operator
overload is equivalent to calling the Add() function, except that it allows the chaining
of item additions to the UIW_VT_LIST.

• returnValueout is a pointer to the UIW_VT_LIST object. This pointer is returned so
that the operator may be used in a statement containing other operations.

• objectin is a pointer to the item that is to be added to the list.

UIW_VT_LIST::ClassName

Syntax
#include <ui_win.hpp>

virtual ZIL_ICHAR *ClassName(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This virtual function returns the object's class name.

• returnValueout is a pointer to _className.

Chapter 32 - UIW_VT_LIST 661

UIW_VT_LIST::Destroy

Syntax

#include <ui_win.hpp>

virtual void Destroy (void);

Portability
This function is available on the following environments:

Remarks
This function destroys all the objects attached to the vertical list.

UIW_VT_LIST::Event

Syntax
#include <ui_win.hpp>

virtual EVENT_TYPE Event(const UI_EVENT &event);

Portability
This function is available on the following environments:

Remarks
This function processes run-time messages sent to the vertical list object. It is declared
virtual so that any derived vertical list class can override its default operation.

662 OpenZinc Application Framework—Programmer's Reference Volume 2

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

• returnValueout indicates how event was processed. If the event is processed
successfully, the function returns the logical type of event that was interpreted from
event. If the event could not be processed, S_UNKNOWN is returned.

• eventin contains a run-time message for the vertical list object. The type of operation
performed depends on the interpretation of the event. The following logical events
are processed by Event():

L_BEGIN_SELECT—Indicates that the end-user began the selection of the
object by pressing the mouse button down while on the object.

L_BOTTOM—Scrolls the list to the last page and makes the last item in the list
current. This message is interpreted from a keyboard event.

L_CONTINUE_SELECT—Indicates that the end-user previously clicked down
on the object with the mouse and is now continuing to hold the mouse button
down while on the object.

L_DOUBLE_CLICK—Indicates that the end-user double-clicked on an object
with the mouse.

L_DOWN—Moves the focus down one object. If the current object is at the
bottom of the list and the WNF_NO_WRAP flag is not set, focus will move to
the top item in the list. This message is interpreted from a keyboard event.

L_END_SELECT—Indicates that the selection process, initiated with the L_-
BEGIN_SELECT message, is complete. For example, the end-user has pressed
and released the mouse button.

L_LEFT—Moves the focus up one object. If the current object is at the top of
the list and the WNF_NO_WRAP flag is not set, focus will move to the bottom
item in the list. This message is interpreted from a keyboard event.

L_NEXT—The list object processes this message by suppressing it. This allows
the list's parent window to process it. This message is interpreted from a
keyboard event.

L_PGDN—Causes the list to scroll down a page. This message is interpreted
from a keyboard event.

L_PGUP—Causes the list to scroll up a page. This message is interpreted from
a keyboard event.

Chapter 32 - UIW_VT_LIST 663

L_PREVIOUS—The list object processes this message by suppressing it. This
allows the list's parent window to process it. This message is interpreted from
a keyboard event.

L_RIGHT—Moves the focus down one object. If the current object is at the
bottom of the list and the WNF_NO_WRAP flag is not set, focus will move to
the top item in the list. This message is interpreted from a keyboard event.

L_SELECT—Indicates that an object on the list has been selected.

L_TOP—Scrolls the list to the first page and makes the first item in the list
current. This message is interpreted from a keyboard event.

L_UP—Moves the focus up one object. If the current object is at the top of the
list and the WNF_NO_WRAP flag is not set, focus will move to the bottom item
in the list. This message is interpreted from a keyboard event.

L_VIEW—Indicates that the mouse is being moved over the list. This message
allows the list to alter the mouse image.

S_ADD_OBJECT—Causes a new object to be added to the list, event.data will
point to the new object to be added.

S_CHANGED—Causes the object to recalculate its position and size. When a
window is moved or sized, the objects on the window will need to recalculate
their positions. This message informs an object that it has changed and that it
should update itself.

S_CREATE—Causes the object to create itself. The object will calculate its
position and size and, if necessary, will register itself with the operating system.
This message is sent by the Window Manager when a window is attached to it
to cause the window and all the objects attached to the window to determine
their positions.

S_CURRENT—Causes the object to draw itself to appear current. This message
is sent by the Window Manager to the window when it becomes current. The
window, in turn, passes this message to the object on the window that is current.
The vertical list passes the message to its current item.

S_DEINITIALIZE—Informs the object that it is about to be removed from the
application and that it should deinitialize any information. The Window Manager
sends this message to a window when the window is subtracted from the

664 OpenZinc Application Framework—Programmer's Reference Volume 2

Window Manager. The window, in turn, relays the message to all objects
attached to it. The vertical list sends the message to all its children.

S_DISPLAY_ACTIVE—Causes the object to draw itself to appear active. An
active object is one that is on the active (i.e., current) window. Most objects do
not display differently whether they are active or inactive. An active object
should not be confused with a current object. An object is active if it is on the
active window. However, it may not be the current object on the window.

The region that needs to be redisplayed is passed in the UI_REGION portion of
the UI_EVENT structure when this message is sent. The object only needs to
redisplay when the region passed by the event overlaps the region of the object.

S_DISPLAY_INACTIYE—Causes the object to draw itself to appear inactive.
An inactive object is one that is not on the active (i.e., current) window. Most
objects do not display differently whether they are inactive or active.

The region that needs to be redisplayed is passed in the UI_REGION portion of
the UI_EVENT structure when this message is sent. The object only needs to
redisplay when the region passed with the event overlaps the region of the object.

S_DRAG_COPY_OBJECT—Indicates the user is dragging the object to copy
it.

S_DRAG_MOVE_OBJECT—Indicates the user is dragging the object to move
it.

S_DROP_COPY_OBJECT—Indicates the user dropped an object to copy it to
this object.

S_DROP_MOVE_OBJECT—Indicates the user dropped an object to move it
to this object.

S_INITIALIZE—Causes the object to initialize any necessary information that
may require a knowledge of its parent or siblings. When the window is added
to the Window Manager, the Window Manager sends this message to cause the
window and all the objects attached to the window to initialize themselves.

S_MOVE—Causes the object to update its location. The distance to move is
contained in the position field of UI_EVENT. For example, an event.position.-
line of -10 and an event.position.column of 15 moves the object 10 lines up and
15 columns to the right.

32 - UIW_VT_LIST 665

S_NON_CURRENT—Indicates that the object has just become non-current.
This message is received when the user moves to another object or window.

S_REDISPLAY—Causes the object to redraw.

S_REGISTER_OBJECT—Causes the object to register itself with the operating
system.

S_SUBTRACT_OBJECT—Causes an object to be subtracted from the list.
event.data will point to the object to be subtracted.

S_VSCROLL—Causes the list to scroll vertically, event.scroll.delta indicates
how far to scroll.

S_VSCROLL_CHECK—Causes the list to scroll the current item into view if
it is not currently visible.

All other events are passed by Event() to UIW_WINDOW::Event() for processing.

NOTE: Because most graphical operating systems already process their own events
related to this object, the messages listed above may not be handled in every
environment. Wherever possible, OpenZinc allows the operating system to process its own
messages so that memory use and speed will be as efficient as possible. In these
situations, the system event can be trapped in a derived Event() function.

U1W_VT_LIST::Information

Syntax
#include <ui_win.hpp>

virtual void *Information(ZIL_INFO_REQUEST request, void "data,
ZIL_OBJECTID objectID = ID_DEFAULT);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

666 OpenZinc Application Framework—Programmer's Reference Volume 2

Remarks
This function allows OpenZinc Application Framework objects and programmer functions to
get or modify specified information about an object.

• returnValueout is a pointer to the return data that was requested. The type of the
return data depends on the request. If the request did not require the return of
information, this value is NULL.

• requestin is a request to get or set information associated with the object. The
following requests (defined in UI_WIN.HPP) are recognized by the vertical list:

I_CHANGED_FLAGS—Informs the object that the programmer has changed
some flags associated with the object and that the object should update itself
accordingly. This request should be sent after changing an object's flags,
particularly if the new flag settings will change the visual appearance of the
object.

I_DESTROY_LIST—Destroys all non-support objects attached to the list. This
request simply calls Destroy().

I_GET_BITMAP_ARRAY—Returns a pointer to the bitmap array of the
current object if it has a bitmap. If a bitmap does not exist, NULL is returned.
If this message is sent, data must be a pointer to ZIL_UINT8.

I_GET_TEXT—Returns a pointer to the text associated with the current object.
If this request is sent, data should be a doubly-indirected pointer to ZIL_ICHAR. This request does not copy the text into a new buffer.

I_INITIALIZE_CLASS—Causes the object to initialize any basic information
that does not require a knowledge of its parent or sibling objects. This request
is sent from the constructor of the object.

I_SET_BITMAP_ARRAY—Sets the bitmap array associated with the current
object, if it has a bitmap. If this message is sent, data must be a pointer to an
array of ZIL_UINT8 that contains the object's new bitmap.

I_SET_TEXT—Sets the text associated with the current object. This request
will also redisplay the object with the new text, data should be a pointer to the
new text.

All other requests are passed by Information() to UIW_WINDOW::Information()
for processing.

Chapter 32 - UIW_VT_LIST 667

• datain/out is used to provide information to the function or to receive the information
requested, depending on the type of request. In general, this must be space allocated
by the programmer.

• objectIDin is a ZIL_OBJECTID that specifies which type of object the request is
intended for. Because the Information() function is virtual, it is possible for an
object to be able to handle a request at more than one level of its inheritance
hierarchy. objectID removes the ambiguity by specifying which level of an object's
hierarchy should process the request. If no value is provided for objectID, the object
will attempt to interpret the request with the objectID of the actual object type.

UIW_VT_LIST::RegionMax

Syntax
#include <ui_win.hpp>

virtual void RegionMax(UI_WINDOW_OBJECT *object);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This virtual function calculates how much space object can occupy within the vertical list
and sets object->trueRegion accordingly.

• objectin is a pointer to the object that is requesting the maximum region of the vertical
list. Its trueRegion member will be modified with its actual position.

668 OpenZinc Application Framework—Programmer's Reference Volume 2

UIW_VT_LIST::ScrollEvent

Syntax
#include <ui_win.hpp>

virtual EVENT_TYPE ScrollEvent(UI_EVENT &event);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function handles events related to scrolling the vertical list. Any events that may
result in the list's scroll region getting updated (e.g., S_CREATE, L_SIZE) will call this
function to update the scroll information. This function is used by OpenZinc. The programmer
typically will not call this function.

• returnValueout indicates how event was processed. If the event is processed
successfully, the function returns the logical type of event that was interpreted from
event. If the event could not be processed, S_UNKNOWN is returned.

• eventin contains a run-time scrolling message for the vertical list object. The type of
operation performed depends on the event. The following logical events are
processed by ScrollEvent():

S_SCROLLRANGE—Updates the scroll values maintained in scroll and
vScrollInfo. This event also updates the scroll bar's information, if one exists.

S_VSCROLL_CHECK—Causes the list to scroll the current item into view if
it is not currently visible.

S_VSCROLL_WINDOW—Causes the objects on the vertical list to scroll
vertically, event.scrolldelta should contain the amount to scroll.

Chapter 32 - UIW_VT_LIST 669

UIW_VT_LIST::Sort

Syntax

#include <ui_gen.hpp>

void Sort(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

This function sorts the UIW_VT_LIST object using the compareFunction that was
assigned in the constructor. If the list has no compare function, no sort occurs.

UIW_VT_LIST::Subtract
UIW_VT_LIST::operator -

Syntax
#include <ui_gen.hpp>

UI_WINDOW_OBJECT *Subtract(UI_WINDOW_OBJECT *object);

Remarks

or
UIW_VT_LIST &operator - (UI_WINDOW_OBJECT *object);

Portability
This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics • Windows
• OSF/Motif • Curses

• OS/2
• NEXTSTEP

670 OpenZinc Application Framework—Programmer's Reference Volume 2

Remarks
These functions remove an object from the UIW_VT_LIST.

The first function removes an object from the UIW_VT_LIST but does not call the
destructor associated with the object. The programmer is responsible for deletion of each
object explicitly subtracted from a list.

• returnValueout is a pointer to the next item in the list. This value is NULL if there
are no more items after the subtracted item.

• elementin is a pointer to the item to be subtracted from the list.

The second overloaded operator removes an item from the UIW_VT_LIST but does not
call the destructor associated with the object. This operator overload is equivalent to
calling the Subtract() function, except that it allows the chaining of item removals from
the UIW_VT_LIST.

• returnValueout is a pointer to the UIW_VT_LIST object. This pointer is returned so
that the operator may be used in a statement containing other operations.

• objectin is a pointer to the item that is to be subtracted from the list.

UIW_VT_LIST::TopWidget

Syntax
#include <ui_win.hpp>

virtual ZIL_SCREENID TopWidget(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows
• Macintosh • OSF/Motif • Curses

• OS/2
• NEXTSTEP

Chapter 32 - UIW_VT_LIST 671

Remarks
This virtual function returns the ZIL_SCREENID of the object's top-most Motif Widget
if the object is made up of multiple Widgets.

• returnValueout is the ZIL_SCREENID of the comboShell if the object is a combo box.
Otherwise this function calls UI_WINDOW_OBJECT::TopWidget() and returns
the result.

Storage Members

This section describes those class members that are used for storage purposes.

UIW_VT_LIST::UIW_VT_LIST

Syntax
#include <ui_win.hpp>

UIW_VT_LIST(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object,
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced constructor creates a new UIW_VT_LIST by loading the object from a
data file. Typically, the programmer does not need to use this constructor. If a vertical
list is stored in a data file it is usually stored as part of a UIW_WINDOW and will be
loaded when the window is loaded.

672 OpenZinc Application Framework—Programmer's Reference Volume 2

• namein is the name of the object to be loaded.

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT::objectTable in "Chapter 43—UIJWIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT:-.userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

UIW_VT_LIST::Load

Syntax
#include <ui_win.hpp>

virtual void Load(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

Chapter 32 - UIW_VT_LIST 673

Portability
This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics • Windows
• OSF/Motif • Curses

• OS/2
• NEXTSTEP

Remarks
This advanced function is used to load a UIW_VT_LIST from a persistent object data file.
It is called by the persistent constructor and is typically not used by the programmer.

• namein is the name of the object to be loaded.

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

• objects is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT:.objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT::userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

674 OpenZinc Application Framework—Programmer's Reference Volume 2

UIW VT LIST::New

Syntax
#include <ui_win.hpp>

static UI_WINDOW_OBJECT *New(const ZIL_ICHAR *name,
ZIL_STORAGE_READ_ONLY *file =

ZIL_NULLP(ZIL_STORAGE_READ_ONLY),
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY),
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced function is used to load a persistent object from a data file. This function
is a static class member so that its address can be placed in a table used by the library to
load persistent objects from a data file.

NOTE: The application must first create a display if objects are to be loaded from a data
file.

• namein is the name of the object to be loaded.

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

Chapter 32 - UIW_VT_LIST 675

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT::objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT: .userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

UIW_VT_LIST::NewFunction

Syntax
#include <ui_win.hpp>

virtual ZIL_NEW_FUNCTION NewFunction(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This virtual function returns a pointer to the object's New() function.

• returnValueout is a pointer to the object's New() function.

676 OpenZinc Application Framework—Programmer's Reference Volume 2

UIW_VT_LIST::Store

Syntax
#include <ui_win.hpp>

virtual void Store(const ZIL_ICHAR *name, ZIL_STORAGE *file,
ZIL_STORAGE_OBJECT *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced function is used to write an object to a data file.

• namein is the name of the object to be stored.

• filein is a pointer to the ZIL_STORAGE where the persistent object will be stored.
For more information on persistent object files, see "Chapter 66—ZIL_STORAGE"
of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT where the persistent object
information will be stored. This must be allocated by the programmer. For more
information on loading persistent objects, see "Chapter 68—ZIL_STORAGE_-
OBJECT" of Programmer's Reference Volume 1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOWJOB JECT::objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the

Chapter 32 - UIW_VT_LIST 677

description of UI_WINDOW_OBJECT::userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

678 OpenZinc Application Framework—Programmer's Reference Volume 2

CHAPTER 33 - UIW_WINDOW

The UIW_WINDOW class is used as the controlling object for objects displayed on the
screen. Any object derived from UI_WINDOW_OBJECT, including other windows, may
be added to a window (e.g., buttons, menus, windows).

The figure below shows a graphical implementation of a UIW_WINDOW class object
with an MDI child window and several minimized objects:

A window can be sized, moved, maximized (in those environments that allow it),
minimized (in those environments that allow it) and closed. If scrolling is desired,
perhaps because more objects are added to the window than can fit in the window, simply
adding scroll bars to the window will allow this type of functionality. Geometry
management constraints can be placed on objects on the window, if desired.

The end-user can move to a new object on a window by clicking on the object with the
mouse, tabbing to the object or arrowing to the object by using the arrow keys on the
keyboard. The term tabbing, as used here, generically refers to the process whereby the
end-user presses a certain key or key combination and focus moves from object to object
in a specific order. Typically, tabbing is accomplished using the <Tab> key, but some
environments may require a <Ctrl-Tab> or some other key combination. Arrowing is
limited when encountering editable fields. Because an editable field uses arrow keys to
maneuver the edit cursor, it may not be possible to move from an editable field using the
arrow keys. In these situations either the mouse or tabbing will need to be used.

A window can be added to the Window Manager so that it comes up maximized or
minimized initially. To do this, create the window, but before adding it to the Window

Chapter 17 - UIW_PULL_DOWN_ITEM 679

Manager, set the WOS_MINIMIZED or WOS_MAXIMIZED status in the window's
woStatus member. When the window is added to the Window Manager, it will appear
as directed by the status flag that was set. NOTE: In Motif, a window cannot be added
to the Window Manager in a maximized state. On the Macintosh, a window cannot be
added to the Window Manager in a minimized state.

OpenZinc supports MDI windows in all environments. MDI is a TLA (Three-Letter Acronym)
for Multiple Document Interface, a concept made popular in the MS-Windows
environment. The MDI specification states that MDI child windows added to an MDI
parent window clip to the parent window's region. Any number of MDI children can be
added to the MDI parent. An MDI parent window must have a pull-down menu (created
using the UIW_PULL_DOWN_MENU object). NOTE: OpenZinc has attempted to adhere to
the MDI specification as closely as possible. However, MDI applications are not standard
across environments. For example, on Motif, Macintosh and NEXTSTEP, MDI children
will not be restricted to the region of their parent. They will still be closed if the parent
window is closed, but because of operating system architectural and design issues, MDI
children will be free to move and size anywhere. Also, in MS-Windows child windows
cannot have a pull-down menu, while in all other environments, they can.

If a child window is added to another window, but the windows are not MDI windows,
the child should not be movable or sizable. If the child is moved or sized so it overlaps
other objects, there may be some ambiguity as to which object draws on top of which and
which object gets events. The situation is similar to adding a string so that it overlaps a
button. The clipping methods on each environment are different, so the resulting display
will be unpredicatable.

The UIW_WINDOW class is declared in UI_WIN.HPP. Its public and protected
members are:

class ZIL_EXPORT_CLASS UIW_WINDOW : public UI_WINDOW_OBJECT, public UI_LIST {
public:

static ZIL_ICHAR _className[];
static int defaultlnitialized;
WNF_FLAGS wnFlags;
UI_LIST support;

UIW_WINDOW(int left, int top, int width, int height,
WOF_FLAGS woFlags = WOF_NO_FLAGS,
WOAF_FLAGS woAdvancedFlags = WOAF_NO_FLAGS,
UI_HELP_CONTEXT helpContext = NO_HELP_CONTEXT,
UI_WINDOW_OBJECT *minObject = ZIL_NULLP(UI_WINDOW_OBJECT));

virtual ~UIW_WINDOW(void);
virtual ZIL_ICHAR *ClassName(void);
virtual void Destroy(void);
virtual EVENT_TYPE Event (const UI_EVENT Seventh-
static UIW_WINDOW *Generic(int left, int top, int width, int height,

ZIL_ICHAR *title,
UI_WINDOW_OBJECT *minObject = ZIL_NULLP(UI_WINDOW_OBJECT),
WOF_FLAGS woFlags = WOF_NO_FLAGS,
WOAF_FLAGS woAdvancedFlags = WOAF_NO_FLAGS,

680 OpenZinc Application Framework—Programmer's Reference Volume 2

UI_HELP_CONTEXT helpContext = NO_HELP_CONTEXT);
UI_WINDOW_OBJECT *Get(const ZIL_ICHAR *name);
UI_WINDOW_OBJECT *Get(ZIL_NUMBERID _numberID);
virtual void *Information(ZIL_INFO_REQUEST request, void *data,

ZIL_OBJECTID objectID = ID_DEFAULT);
virtual EVENT_TYPE Scrol1Event(UI_EVENT &event);
static int StringCompare(void *objectl, void *object2);

#if defined(ZIL_LOAD)
virtual ZIL_NEW_FUNCTION NewFunction(void) ;
static UI_WINDOW_OBJECT *New(const ZIL_ICHAR *name,

ZIL_STORAGE_READ_ONLY *file = ZIL_NULLP(ZIL_STORAGE_READ_ONLY),
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY),
UI_ITEM *objectTable = ZIL_NULLP (UI_ITEM) ,
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

UIW_WINDOW(const ZIL_ICHAR *name,
ZIL_STORAGE_READ_ONLY *file = ZIL_NULLP(ZIL_STORAGE_READ_ONLY),
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY),
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

virtual void Load (const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

#endif

#if defined(ZIL_STORE)
virtual void Store(const ZIL_ICHAR *name,

ZIL_STORAGE *file = ZIL_NULLP(ZIL_STORAGE),
ZIL_STORAGE_OBJECT *object = ZIL_NULLP(ZIL_STORAGE_OBJECT),
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

#endif

// List members.
UI_WINDOW_OBJECT *Add(UI_WINDOW_OBJECT *object);
UI_WINDOW_OBJECT *Current(void);
UI_WINDOW_OBJECT *First(void);
UI_WINDOW_OBJECT *Last(void);
UI_WINDOW_OBJECT *Subtract(UI_WINDOW_OBJECT *object);
UIW_WINDOW &operator+(UI_WINDOW_OBJECT *object);
UIW_WINDOW &operator-(UI_WINDOW_OBJECT *object);

void SetLanguage (const ZIL_ICHAR *languageName) ;

protected:
UI_REGION scroll;
UI_REGION_LIST clipList;
UI_WINDOW_OBJECT *vScroll;
UI_WINDOW_OBJECT *hScroll;
UI_SCROLL_INFORMATION hScrollInfo;
UI_SCROLL_INFORMATION vScrol1Info;
ZIL_ICHAR *compareFunctionName; // Used for storage purposes only.
UI_WINDOW_OBJECT *defaultobject;
const ZIL_LANGUAGE *myLanguage;

void CheckSelection(UI_WINDOW_OBJECT *selectedObject =
ZIL_NULLP(UI_WINDOW_OBJECT));

virtual EVENTJYPE Drawltem(const UI_EVENT &event, EVENTJYPE ccode);
virtual void RegionMax(UI_WINDOW_OBJECT *object);

#ifdef ZIL_MOTIF
ZIL_UINT32 supportDecorations;

#endif
} ;

Chapter 33 - UIW_WINDOW 681

General Members

This section describes those members that are used for general purposes.

• _className contains a string identifying the class. The string is always the same
name as the class, is always in English, and never changes. For example, for the
UIW_WINDOW class, _className is "UIW_WINDOW."

• defaultlnitialized indicates if the default language strings for this object have been set
up. The default strings are located in the file LANG_DEF.CPP. If defaultlnitialized
is TRUE, the strings have been set up. Otherwise they have not been. default-
Initialized is set to TRUE when the strings are set up in the object's constructor.

• wnFlags are flags that define the operation of the window. The following flags
(declared in UI_WIN.HPP) affect the operation of a UIW_WINDOW class object:

WNF_NO_FLAGS—Does not associate any special window flags with the
window object. This flag should not be used in conjunction with any other
WNF_FLAGS.

WNF_NO_SCROLL—Will not allow the window to be scrolled.

WNF_NO_WRAP—Will not allow tabbing to wrap from the end of a window
to the beginning or vice versa.

WNF_SELECT_MULTIPLE—Allows more than one object to be selected at
a time. This flag must be set if check boxes are added directly to the window.

• support is a special list of objects that have been added to the window. The support
list is reserved for objects that do not appear in the user region of the window. These
objects typically include the border, title, system button, maximize button and
minimize button. If the window has them, the pull-down menu and status bar will
typically be support objects as well. Because these objects are not part of the user
region of the window, they will not be scrolled if the window is scrolled. Nor will
they be overwritten if the window is sized smaller so that some objects overlap them.
An object is placed in the support list if its WOF_SUPPORT_OBJECT flag is set
when it is added to the window. Care should be taken when creating a support
object. Generally an object should only be created as a support object if the flag is
set by default in the constructor. Undesirable effects may result when setting the flag
on other objects.

682 OpenZinc Application Framework—Programmer's Reference Volume 2

• scroll is the entire, virtual scroll region of the window.

• clipList is a list of the regions occupied by objects in the window. clipList.First()
will return a UI_REGION_ELEMENT that contains the user region of the window.
The regions occupied by non-field region objects are maintained in clipList.

• vScroll is a pointer to the vertical scroll bar attached to the window, if one exists.

• hScroll is a pointer to the horizontal scroll bar attached to the window, if one exists.

• vScrollInfo is the vertical scroll information for the window. This information is kept
so that a window may be scrolled without scroll bars.

• hScrollInfo is the horizontal scroll information for the window. This information is
kept so that a window may be scrolled without scroll bars.

• compareFunctionName is the string representation of the compare function's name.
It is used for storage purposes only.

• defaultObject is a pointer to the default button on the window, if one exists. The
default button is set by creating a button with the BTF_DEFAULT_BUTTON flag
set.

• myLanguage is the ZIL_LANGUAGE object that contains the string translations for
this object.

• supportDecorations indicates which X decorations have been associated with the
window. X decorations include such things as a system button, maximize button,
minimize button, title and border. If supportDecorations is 0, no decorations have
been associated with the window. This member is specific to Motif.

UIW_WINDOW::UIW_WINDOW

Syntax
#include <ui_win.hpp>

UIW_WINDOW(int left, int top, int width, int height,
WOF_FLAGS woFlags = WOF_NO_FLAGS,
WOAF_FLAGS woAdvancedFlags = WOAF_NO_FLAGS,
UI_HELP_CONTEXT helpContext = NO_HELP_CONTEXT,

Chapter 33 - UIW_WINDOW 683

UI_WINDOW_OBJECT *minObject = ZIL_NULLP(UI_WINDOW_OBJECT);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This constructor creates a new UIW_WINDOW class object.

• left i n and topin is the starting position of the window. Typically, these values are in
cell coordinates. If the WOF_MINICELL flag is set, however, these values will be
interpreted as minicell values.

• widthin is the width of the window. Typically, this value is in cell coordinates. If the
WOF_MINICELL flag is set, however, this value will be interpreted as a minicell
value.

• heightin is the height of the window. Typically, this value is in cell coordinates. If
the WOF_MINICELL flag is set, however, this value will be interpreted as a minicell
value.

• woFlagsin are flags (common to all window objects) that determine the general
operation of the window. The following flags (declared in UI_WIN.HPP) affect the
operation of a UIW_WINDOW class object:

WOF_BORDER—Draws a border around the object. The graphical border's
appearance will depend on the operating system used, and, if in DOS, on the
graphics style being used. In text mode, a border may or may not be drawn,
depending on the text style being used. See "Appendix A—Support
Definitions" in this manual for information on changing DOS graphics mode
styles and text mode styles. This flag should not be used if the window has a
UIW_BORDER object.

WOF_MINICELL—Causes the position and size values that were passed into
the constructor to be interpreted as minicells. A minicell is a fraction the size
of a normal cell. Greater precision in object placement is achieved by specifying

684 OpenZinc Application Framework—Programmer's Reference Volume 2

an object's position in minicell coordinates. A minicell is l/10th the size of a
normal cell by default.

WOF_NO_FLAGS—Does not associate any special window flags with the
object. This flag should not be used in conjunction with any other WOF flags.
This flag is set by default in the constructor.

WOF_NON_FIELD_REGION—Causes the object to ignore its position and
size parameters and use the remaining available space in its parent object.

• woAdvancedFlagsin are flags (common to all window objects) that determine the
advanced operation of the window. The following flags (declared in UI_WIN.HPP)
control the advanced operation of a window:

WOAF_DIALOG_OBJECT—Creates the window as a dialog box. A dialog
box is a temporary window used to display or receive information from the user.
Using this flag will cause a special dialog style border to be displayed.

NOTE: Some operating environments (e.g, Windows) will create a border,
system button and title for a dialog window. Other environments (e.g., DOS)
may not, and so a border, system button and title must be added to the dialog
window by the programmer. OpenZinc will ignore any support objects in
environments that automatically provide them, such as Windows.

WOAF_LOCKED—Prevents the Window Manager from removing the window
from the display. The WOAF_LOCKED flag must be cleared before the
Window Manager will allow the window to be removed from the display.

WOAF_MDI_OBJECT—Causes the window to be an MDI window. If this
flag is set on a window that is added to the Window Manager, it becomes an
MDI parent (i.e., it can contain MDI child objects). An MDI parent must have
a pull-down menu. An MDI parent should contain only support objects (i.e.,
system button, border, title, etc.), the required pull-down menu, an optional tool
bar and MDI children.

If this flag is set on a window that is added to another MDI window, it becomes
an MDI child window. MDI child windows can be moved or sized but will
remain entirely within the MDI parent window.

NOTE: MDI is not standard across environments. For example, in Windows,
DOS, Curses and OS/2, child windows will be clipped by their parent window,
but in Motif, NEXTSTEP and Macintosh, the child windows will not be clipped

Chapter 33 - UIW_WINDOW 685

by their parent. In these environments, the child windows are still owned by the
parent window, however, so closing the parent window will cause all child
windows added to the parent to close also.

WOAF_MODAL—Prevents any other window from receiving events from the
Window Manager. A modal window receives all events until it is removed from
the display.

WOAF_NO_DESTROY—Prevents the window from being destroyed when it
is closed. If this flag is set, the window can be removed from the display, but
the programmer is responsible for destroying the window.

WOAF_NO_FLAGS—Does not associate any special advanced flags with the
window object. This flag should not be used in conjunction with any other
WOAF flags. This flag is set by default in the constructor.

WOAF_NO_MOVE—Prevents the end-user from changing the screen location
of the window at run-time. This flag must be set if the window is to be a non-
MDI child.

WOAF_NO_SIZE—Prevents the end-user from changing the size of the window
at run-time. This flag must be set if the window is to be a non-MDI child.

WOAF_NORMAL_HOT_KEYS—Allows the end-user to select an option
using its hotkey by pressing the hotkey by itself, without the <Alt> key
otherwise required for selecting with a hotkey. Care should be taken when using
this flag on a window, as editable objects will no longer work properly.

WOAF_TEMPORARY—Causes the window to be displayed temporarily. If
another window is made current or a non-temporary window is added to the
Window Manager, all temporary windows are removed automatically by the
Window Manager.

• helpContextin identifies the help information associated with the window. helpContext
is a help context that was created for the help system. If the end-user presses the
help key while on this window, and the current object on the window does not have
a help context, this help context will be used to display help. For more information
about the help system and help context information see "Chapter 17—UI_HELP_-
SYSTEM" of Programmer's Reference Volume 1.

• minObjectin is the UIW_ICON to be displayed when the window is minimized.

686 OpenZinc Application Framework—Programmer's Reference Volume 2

Example 1
#include <ui_win.hpp>

ExampleFunctionl(UI_WINDOW_MANAGER *windowManager)
{

// Create a window with basic window objects.
UIW_WINDOW *window = new UIW_WINDOW(0, 1, 67, 11);

*window
+ new UIW_BORDER
+ new UIW_MAXIMIZE_BUTTON
+ new UIW_MINIMIZE_BUTTON
+ new UIW_SYSTEM_BUTTON
+ new UIW_TITLE("Window 1");

*windowManager + window;

// The window will automatically be destroyed when the window
// manager is destroyed.

}

Example 2
#include <ui_win.hpp>

ExampleFunction2(UI_WINDOW_MANAGER *windowManager) {
// Create a window with basic window objects.
UIW_ICON *icon = new UIW_ICON(C), 0, "iconLogo", "OpenZinc Logo",

ICF_MINIMIZE_OBJECT);

UIW_WINDOW *window = new UIW_WINDOW(0, 1, 67, 11, WOF_NO_FLAGS,
WOAF_NO_FLAGS, NO_HELP_CONTEXT, icon);

*window
+ new UIW_BORDER
+ new UIW_MAXIMIZE_BUTTON
+ new UIW_MINIMIZE_BUTTON
+ new UIW_SYSTEM_BUTTON
+ new UIW_TITLE("Window 1");

*windowManager + window;

// The window will automatically be destroyed when the window
// manager is destroyed.

}

Chapter 33 - UIW_WINDOW 687

UIW_WINDOW::~UIW_WINDOW

Syntax

#include <ui_win.hpp>

virtual ~UIW_WINDOW(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

This virtual destructor destroys the class information associated with the UIW_WINDOW
object. All objects attached to the window will also be destroyed.

UIW_WINDOW::Add
UIW_WINDOW::operator +

Syntax
#include <ui_win.hpp>

UI_WINDOW_OBJECT *Add(UI_WINDOW_OBJECT *object);

UIW_WINDOW &operator + (UI_WINDOW_OBJECT *object);

Portability
This function is available on the following environments:

Remarks

or

• DOS Text
• Macintosh

• DOS Graphics • Windows
• OSF/Motif • Curses

• OS/2
• NEXTSTEP

688 OpenZinc Application Framework—Programmer's Reference Volume 2

Remarks
These overloaded functions are used to add an object to the window. The order in which
objects are added to a window is important because it sets the tabbing order for the
window.

The first function adds an object to the UIW_WINDOW.

• returnValueout is a pointer to object if the addition was successful. Otherwise,
returnValue is NULL.

• objectin is a pointer to the object to be added to the window.

The second overloaded operator adds an object to the UIW_WINDOW. This operator
overload is equivalent to calling the UIW_WINDOW::Add() function except that it
allows the chaining of object additions to the UIW_WINDOW.

• returnValueout is a pointer to the UIW_WINDOW. This pointer is returned so that
the operator may be used in a statement containing other operations.

• objectin is a pointer to the object that is to be added to the window.

Example
#include <ui_win.hpp>

ExampleFunction(UI_WINDOW_MANAGER *windowManager) {
// Create a new window and attach it to the window manager.
UIW_WINDOW *window = new UIW_WINDOW(0, 0, 40, 10);
*window

+ new UIW_BORDER
+ new UIW_MAXIMIZE_BUTTON
+ new UIW_MINIMIZE_BUTTON
+ new UIW_SYSTEM_BUTTON
+ new UIW_TITLE("Window 1");

*windowManager + window;

Chapter 33 - UIW_WINDOW 689

UIW_WINDOW::CheckSelection

Syntax
#include <ui_win.hpp>

void CheckSelection(UI_WINDOW_OBJECT *selectedObject =
ZIL_NULLP(UI_WINDOW_OBJECT));

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function is used to update the selected status of objects on the window. If a window
does not have the WNF_SELECT_MULTIPLE then only one object on the window can
be selected at a time. This function makes sure that the selected status of the objects on
the window are set appropriately.

• selectedObjectin is the object that was selected.

UIW WINDOW::ClassName

Syntax
#include <ui_win.hpp>

virtual ZIL_ICHAR *ClassName(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows
• Macintosh • OSF/Motif • Curses

• OS/2
• NEXTSTEP

690 OpenZinc Application Framework—Programmer's Reference Volume 2

Remarks
This virtual function returns the object's class name.

• returnValueout is a pointer to _className.

UIW_WINDOW::Current

Syntax

#include <ui_win.hpp>

UI_WINDOW_OBJECT *Current(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function returns a pointer to the current object, if one exists, in the window.

• returnValueout is a pointer to the current object in the window. If there is no current
object, returnValue is NULL.

UIW_WI N DOW::Destroy

Syntax

#include <ui_win.hpp>

virtual void Destroy (void);

Chapter 33 - UIW_WINDOW 691

Portability
This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics • Windows
• OSF/Motif • Curses

• OS/2
• NEXTSTEP

Remarks
This function destroys all the objects attached to the window.

UIW_WINDOW::Drawltem

Syntax
#include <ui_win.hpp>

virtual EVENT_TYPE DrawItem(const UI_EVENT &event, EVENT_TYPE ccode);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows BOS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

This virtual advanced function is used to draw the object. If the WOS_OWNERDRAW
status is set for the object, this function will be called when drawing the window. This
allows the programmer to derive a new class from UIW_WINDOW and handle the
drawing of the window, if desired.

• returnValueout is a response based on the success of the function call. If the object
is drawn the function returns a non-zero value. If the object is not drawn, 0 is
returned.

• eventin contains the run-time message that caused the object to be redrawn.
event.region contains the region in need of updating. The following logical events
may be sent to the Drawltem() function:

Remarks

692 OpenZinc Application Framework—Programmer's Reference Volume 2

S.CURRENT, S_NON_CURRENT, S_DISPLAY_ACTIVE and S_DIS-
PLAY_INACTIVE—Messages that cause the object to be redrawn.

WM_DRAWITEM—A message that causes the object to be redrawn. This
message is specific to Windows and OS/2.

Expose—A message that causes the object to be redrawn. This message is
specific to Motif.

• ccodein contains the logical interpretation of event.

UIW_WINDOW::Event

Syntax
#include <ui_win.hpp>

virtual EVENT_TYPE Event(const UI_EVENT &event);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function processes run-time messages sent to the window object. It is declared
virtual so that any derived window class can override its default operation.

• returnValueout indicates how event was processed. If the event is processed
successfully, the function returns the logical type of event that was interpreted from
event. If the event could not be processed, S_UNKNOWN is returned.

• eventin contains a run-time message for the window object. The type of operation
performed depends on the interpretation of the event. The following logical events
are processed by Event():

Chapter 33 - UIW_WINDOW 693

E_MOUSE—Indicates that a general mouse event occurred. Typically, the
window will pass mouse events to the object overlapped by the mouse.

L_BEGIN_SELECT—Indicates that the end-user began the selection of the
object by pressing the mouse button down while on the object. The window will
route this message to the object that the mouse event occurred on.

L_CANCEL—Causes focus to move from the pull-down menu to the current
object on the user region of the window.

L_CONTINUE_SELECT—Indicates that the end-user previously clicked down
on the object with the mouse and is now continuing to hold the mouse button
down while on the object. The window will route this message to the object that
the mouse event occurred on.

L_DOWN—Moves the focus down one object. If there is no object below the
current object, focus will "wrap" to an object at the top of the window and to
the right of the current object. This message is interpreted from a keyboard
event.

L_END_SELECT—Indicates that the selection process, initiated with the L_-
BEGIN_SELECT message, is complete. For example, the end-user has pressed
and released the mouse button. The window will route this message to the
object that the mouse event occurred on.

L_FIRST—Causes the first object on the window to be made current.

L_HELP—Causes the help system to be displayed. The window passes this
message to the current object to let it display its help. If the current object does
not process the message, the window's help context will be displayed.

L_LAST—Causes the last object on the window to be made current.

L_LEFT—Moves the focus left one object. If there is no object to the left of
the current object, focus will "wrap" to an object on the right of the window
and above the current object. This message is interpreted from a keyboard event.

L_MAXIMIZE—Causes the window to be maximized so that it is as large as
allowed. If the window is added to the Window Manager it will be the size of
the screen. If the window is an MDI child, it will be as large as its parent's user
region. If the window is already in a maximized state, L_MAXIMIZE causes
it to return to its original size.

694 OpenZinc Application Framework—Programmer's Reference Volume 2

L_MDICHILD_EVENT + L_MOYE—Causes the current MDI child window
to go into "move mode." If, for example, the end-user selects the "Move"
option from the system menu, the window can then be moved using the arrow
keys.

L_MDICHILD_EVENT + L_NEXT_WINDOW—Makes the next MDI child
the current MDI child.

L_MDICHILD_EVENT + L_SIZE—Causes the current MDI child window to
go into "size mode." If, for example, the end-user selects the "Size" option
from the system menu, the window can then be sized using the arrow keys.

L_MINIMIZE—Causes the window to be minimized. If the window has a
minimize icon, it will be displayed. If the window is already in a minimized
state, L_MINIMIZE causes it to return to its original size.

L_MOVE—Causes the window to go into "move mode." If, for example, the
end-user selects the "Move" option from the system menu, the window can then
be moved using the arrow keys.

L_NEXT—Causes the next selectable object in the list of window objects to
become current. If the last field on the window is current, the first object will
become current unless the WNF_NO_WRAP flag is set. This message is
interpreted from a keyboard event.

L_PREVIOUS—Causes the previous selectable object in the list of window
objects to become current. If the first field on the window is current, the last
object will become current unless the WNF_NO_WRAP flag is set. This
message is interpreted from a keyboard event.

L_RESTORE—Causes the window to return to its normal size if the window
was in a maximized or minimized state.

L_RIGHT—Moves the focus right one object. If there is no object to the right
of the current object, focus will "wrap" to an object on the left of the window
and below the current object. This message is interpreted from a keyboard event.

L_SIZE—Causes the window to go into "size mode." If, for example, the end-
user selects the "Size" option from the system menu, the window can then be
sized using the arrow keys.

Chapter 33 - UIW_WINDOW 695

L_UP—Moves the focus up one object. If there is no object above the current
object, focus will "wrap" to an object at the bottom of the window and to the
left of the current object. This message is interpreted from a keyboard event.

L_VIEW—Indicates that the mouse is being moved over the window. This
message allows the window to alter the mouse image.

S_ADD_OBJECT—Causes a new object to be added to the window, event.data
will point to the new object to be added.

S_ALT_KEY—Causes focus to move from the user region to the pull-down
menu or, if the pull-down menu has focus, from the pull-down menu to the
current object on the user region of the window.

S_CHANGED—Causes the object to recalculate its position and size. When a
window is moved or sized, the objects on the window will need to recalculate
their positions. This message informs an object that it has changed and that it
should update itself.

S_CREATE—Causes the object to create itself. The object will calculate its
position and size and, if necessary, will register itself with the operating system.
This message is sent by the Window Manager when a window is attached to it
to cause the window and all the objects attached to the window to determine
their positions.

S_CURRENT—Causes the object to draw itself to appear current. This message
is sent by the Window Manager to the window when it becomes current. The
window, in turn, passes this message to the object on the window that is current.

S_DEINITIALIZE—Informs the object that it is about to be removed from the
application and that it should deinitialize any information. The Window Manager
sends this message to the window when the window is subtracted from the
Window Manager. The window, in turn, relays the message to all objects
attached to it.

S_DISPLAY_ACTIVE—Causes the object to draw itself to appear active. An
active object is one that is on the active (i.e., current) window. Most objects do
not display differently whether they are active or inactive. An active object
should not be confused with a current object. An object is active if it is on the
active window. However, it may not be the current object on the window.

696 OpenZinc Application Framework—Programmer's Reference Volume 2

The region that needs to be redisplayed is passed in the UI_REGION portion of
the UI_EVENT structure when this message is sent. The object only needs to
redisplay when the region passed by the event overlaps the region of the object.
This message is sent by the window to all the non-current, active objects
attached to it.

S_DISPLAY_INACTIVE—Causes the object to draw itself to appear inactive.
An inactive object is one that is not on the active (i.e., current) window. Most
objects do not display differently whether they are inactive or active.

The region that needs to be redisplayed is passed in the UI_REGION portion of
the UI_EVENT structure when this message is sent. The object only needs to
redisplay when the region passed with the event overlaps the region of the object.
This message is sent by the window to all the objects attached to it.

S_DRAG_COPY_OBJECT—Indicates the user is dragging the object to copy
it.

S_DRAG_MOVE_OBJECT—Indicates the user is dragging the object to move
it.

S_DROP_COPY_OBJECT—Indicates the user dropped an object to copy it to
this object.

S_DROP_MOVE_OBJECT—Indicates the user dropped an object to move it
to this object.

S_HSCROLL—Causes the window to scroll horizontally, event.scrolldelta
indicates how far to scroll.

S_INITIALIZE—Causes the object to initialize any necessary information that
may require a knowledge of its parent or siblings. When the window is added
to the Window Manager, the Window Manager sends this message to cause the
window and all the objects attached to the window to initialize themselves.

S_MAXIMIZE—Causes the window to be maximized so that it is as large as
allowed. If the window is added to the Window Manager it will be the size of
the screen. If the window is an MDI child, it will be as large as its parent's user
region. If the window is already in a maximized state, S_MAXIMIZE causes it
to return to its original size.

Chapter 33 - UIW_WINDOW 697

S_MDICHILD_EVENT + S_CLOSE—Causes the current MDI child to be
closed. The MDI parent will subtract the current MDI child and, if the MDI
child does not have the WOAF_NO_DESTROY flag set, will delete the child.

S_MDICHILD_EVENT + S.MAXIMIZE—Causes the current MDI child
window to be maximized so that it is as large as its parent's user region. If the
window is already in a maximized state, S_MDI_CHILD_EVENT +
S_MAXIMIZE causes it to return to its original size.

S_MDICHILD_EVENT + S.MINIMIZE—Causes the current MDI child
window to be minimized. If the window has a minimize icon, it will be
displayed. If the window is already in a minimized state, S_MDI_CHILD_-
EVENT + S_MINIMIZE causes it to return to its original size.

S_MDICHILD_EVENT + S_RESTORE—Causes the current MDI child
window to return to its normal size if the window was in a maximized or
minimized state.

S_MINIMIZE—Causes the window to be minimized. If the window has a
minimize icon, it will be displayed. If the window is already in a minimized
state, S_MINIMIZE causes it to return to its original size.

S_MOVE—Causes the object to update its location. The distance to move is
contained in the position field of UI_EVENT. For example, an event.position.-
line of -10 and an event.position.column of 15 moves the object 10 lines up and
15 columns to the right.

S_NON_CURRENT—Indicates that the object has just become non-current.
This message is received when the user moves to another window.

S_REDISPLAY—Causes the object to redraw.

S_REGION_DEFINE—Causes the object to reserve a region of the screen in
which it will display.

S_REGISTER_OBJECT—Causes the object to register itself with the operating
system.

S_RESET_DISPLAY—Changes the display to a different resolution, event.data
should point to the new display class to be used. If event.data is NULL, then
a text mode display will be created. This event is specific to DOS and must be

698 OpenZinc Application Framework—Programmer's Reference Volume 2

placed on the event queue by the programmer. The library will never generate
this event.

S_RESTORE—Causes the window to return to its normal size if the window
was in a maximized or minimized state.

S_SCROLLRANGE—Calculates the scroll region for the window.

S_SIZE—Causes the object to recalculate its position and size. When a window
is sized, the objects on the window will need to recalculate their positions. This
message informs an object that it has changed and that it should update itself.

S_SUBTRACT_OBJECT—Causes an object to be subtracted from the window.
event.data will point to the object to be subtracted.

S_VSCROLL—Causes the window to scroll vertically, event.scrolldelta
indicates how far to scroll.

All other events are passed by Event() to the current object, if one exists, for
processing. If there is no current object, or if the current object cannot process it, the
event is passed to UI_WINDOW_OBJECT::Event() for processing.

NOTE: Because most graphical operating systems already process their own events
related to this object, the messages listed above may not be handled in every
environment. Wherever possible, OpenZinc allows the operating system to process its own
messages so that memory use and speed will be as efficient as possible. In these
situations, the system event can be trapped in a derived Event() function.

UIW_WINDOW::First

Syntax

#include <ui_win.hpp>

UI_WINDOW_OBJECT *First(void);

Chapter 33 - UIW_WINDOW 699

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function returns a pointer to the first object, if one exists, in the window.

• returnValueout is a pointer to the first object in the window. If there is no first object,
returnValue is NULL.

UIW_WINDOW::Generic

Syntax
#include <ui_win.hpp>

static UIW_WINDOW *Generic(int left, int top, int width, int height, ZIL_ICHAR "title,
UI_WINDOW_OBJECT *minObject = ZIL_NULLP(UI_WINDOW_OBJECT),
WOF_FLAGS woFlags = WOF_NO_FLAGS,
WOAF_FLAGS woAdvancedFlags = WOAF_NO_FLAGS,
UI_HELP_CONTEXT helpContext = NO_HELP_CONTEXT);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh •OSF/Motif • Curses • NEXTSTEP

Remarks
This function creates a new window that includes a border, a maximize button, a
minimize button, a generic system button and a title.

• returnValueout is a pointer to the window that was created.

700 OpenZinc Application Framework—Programmer's Reference Volume 2

• left i n and topin is the starting position of the window. Typically, these values are in
cell coordinates. If the WOF_MINICELL flag is set, however, these values will be
interpreted as minicell values.

• widthin is the width of the window. Typically, this value is in cell coordinates. If the
WOF_MINICELL flag is set, however, this value will be interpreted as a minicell
value.

• heightin is the height of the window. Typically, this value is in cell coordinates. If
the WOF_MINICELL flag is set, however, this value will be interpreted as a minicell
value.

• titlein is the text that is to appear on the window's title bar.

• minObjectin is the UIW_ICON to be displayed when the window is minimized.

• woFlagsin are flags (common to all window objects) that determine the general
operation of the window. The following flags (declared in UI_WIN.HPP) affect the
operation of a UIW_WINDOW class object:

WOF_BORDER—Draws a border around the object. The graphical border's
appearance will depend on the operating system used, and, if in DOS, on the
graphics style being used. In text mode, a border may or may not be drawn,
depending on the text style being used. See "Appendix A—Support
Definitions" in this manual for information on changing DOS graphics mode
styles and text mode styles. This flag should not be used if the window has a
UIW_BORDER object.

WOF_MINICELL—Causes the position and size values that were passed into
the constructor to be interpreted as minicells. A minicell is a fraction the size
of a normal cell. Greater precision in object placement is achieved by specifying
an object's position in minicell coordinates. A minicell is l/10th the size of a
normal cell by default.

WOF_NO_FLAGS—Does not associate any special window flags with the
object. This flag should not be used in conjunction with any other WOF flags.
This flag is set by default in the constructor.

WOF_NON_FIELD_REGION—Causes the object to ignore its position and
size parameters and use the remaining available space in its parent object.

Chapter 33 - UIW_WINDOW 701

• woAdvancedFlagsin are flags (common to all window objects) that determine the
advanced operation of the window. The following flags (declared in UI_WIN.HPP)
control the advanced operation of a window:

WOAF_DIALOG_OBJECT—Creates the window as a dialog box. A dialog
box is a temporary window used to display or receive information from the user.
Using this flag will cause a special dialog style border to be displayed.

NOTE: Some operating environments (e.g, Windows) will create a border,
system button and title for a dialog window. Other environments (e.g., DOS)
may not, and so a border, system button and title must be added to the dialog
window by the programmer. OpenZinc will ignore any support objects in
environments that automatically provide them, such as Windows.

WOAF_LOCKED—Prevents the Window Manager from removing the window
from the display. The WOAFJLOCKED flag must be cleared before the
Window Manager will allow the window to be removed from the display.

WOAF_MDI_OBJECT—Causes the window to be an MDI window. If this
flag is set on a window that is added to the Window Manager, it becomes an
MDI parent (i.e., it can contain MDI child objects). An MDI parent must have
a pull-down menu. An MDI parent should contain only support objects (i.e.,
system button, border, title, etc.), the required pull-down menu, an optional tool
bar and MDI children.

If this flag is set on a window that is added to another MDI window, it becomes
an MDI child window. MDI child windows can be moved or sized but will
remain entirely within the MDI parent window.

NOTE: MDI is not standard across environments. For example, in Windows,
DOS, Curses and OS/2, child windows will be clipped by their parent window,
but in Motif, NEXTSTEP and Macintosh, the child windows will not be clipped
by their parent. In these environments, the child windows are still owned by the
parent window, however, so closing the parent window will cause all child
windows added to the parent to close also.

WOAF_MODAL—Prevents any other window from receiving events from the
Window Manager. A modal window receives all events until it is removed from
the display.

702 OpenZinc Application Framework—Programmer's Reference Volume 2

WOAF_NO_DESTROY—Prevents the window from being destroyed when it
is close. If this flag is set, the window can be removed from the display, but the
programmer is responsible for destroying the window.

WOAF_NO_FLAGS—Does not associate any special advanced flags with the
window object. This flag should not be used in conjunction with any other
WOAF flags.

WOAF_NO_MOVE—Prevents the end-user from changing the screen location
of the window at run-time. This flag must be set if the window is to be a non-
MDI child.

WOAF_NO_SIZE—Prevents the end-user from changing the size of the window
at run-time. This flag must be set if the window is to be a non-MDI child.

WOAF_NORMAL_HOT_KEYS—Allows the end-user to select an option
using its hotkey by pressing the hotkey by itself, without the <Alt> key
otherwise required for selecting with a hotkey. Care should be taken when using
this flag on a window, as editable objects will no longer work properly.

WOAF_TEMPORARY—Causes the window to be displayed temporarily. If
another window is made current or a non-temporary window is added to the
Window Manager, all temporary windows are removed automatically by the
Window Manager.

• helpContextin identifies the help information associated with the window. helpContext
is a help context that was created for the help system. If the end-user presses the
help key while on this window, and the current object on the window does not have
a help context, this help context will be used to display help. For more information
about the help system and help context information see "Chapter 17—UI_HELP_-
SYSTEM" of Programmer's Reference Volume 1.

Example
#include <ui_win.hpp>

ExampleFunction(UI_WINDOW_MANAGER *windowManager)
{

// Create a window with basic window objects.
UIW_WINDOW *window = UIW_WINDOW::Generic(0, 1, 67, 11, "Windowl");
*windowManager + window;

Chapter 33 - UIW_WINDOW 703

// The window will automatically be destroyed when the window
// manager is destroyed.

}

UIW_WINDOW::Get

Syntax
#include <ui_win.hpp>

UI_WINDOW_OBJECT *Get(const ZIL_ICHAR *name);
or

UI_WINDOW_OBJECT *Get(ZIL_NUMBERID _numberID);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
These overloaded functions are used to get a pointer to a specific object on the window.
They do a depth-first search of the objects attached to the window searching for a match
on the identification data specified.

The first overloaded function returns the object whose stringlD matches name.

• returnValueout is a pointer to the object whose stringlD matches name. If no object
matches name, NULL is returned.

• namein is the stringlD of the object to be located.

The second function returns the object whose numberlD matches _numberID.

• returnValueout is a pointer to the object whose numberlD matches _numberID. If no
object matches _numberID, NULL is returned.

• _numberIDin is the numberlD of the object to be located.

704 OpenZinc Application Framework—Programmer's Reference Volume 2

UIW_WIN DOW::Information

Syntax
#include <ui_win.hpp>

virtual void *Information(ZIL_INFO_REQUEST request, void "data,
ZIL_OBJECTID objectID = ID_DEFAULT);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function allows OpenZinc Application Framework objects and programmer functions to
get or modify specified information about an object.

• returnValueout is a pointer to the return data that was requested. The type of the
return data depends on the request. If the request did not require the return of
information, this value is NULL.

• requestin is a request to get or set information associated with the object. The
following requests (defined in UI_WIN.HPP) are recognized by the window:

I_CHANGED_FLAGS—Informs the object that the programmer has changed
some flags associated with the object and that the object should update itself
accordingly. This request should be sent after changing an object's flags,
particularly if the new flag settings will change the visual appearance of the
object.

I_CHECK_SELECTION—Ensures that the proper selected status is set for
objects attached to the window. This request simply causes CheckSelection()
to be called, data must be a pointer to the selected object, data is passed to
CheckSelection() as the selectedObject parameter.

I_CLEAR_FLAGS—Clears the current flag settings for the object. If this
request is sent, data should be a pointer to a variable of type UIF_FLAGS that

Chapter 33 - UIW_WINDOW 705

contains the flags to be cleared, and objectID should indicate the type of object
with which the flags are associated. For example, if the programmer wishes to
clear the WOF_FLAGS of an object, objectID should be ID_WINDOW_-
OBJECT. If the WNF_FLAGS are to be cleared, objectID should be ID_-
WINDOW. This allows the object to process the request at the proper level.
This request only clears those flags that are passed in; it does not simply clear
the entire field.

I_COPY_TEXT—Copies the text associated with the window's title into a
buffer provided by the programmer. If this request is sent, data must be the
address of a buffer where the title's text will be copied. This buffer must be
large enough to contain all of the characters associated with the title and the
terminating NULL character.

I_DESTROY_LIST—Destroys all non-support objects attached to the window.
This request simply calls Destroy().

I_GET_CLIPREGION—Returns a pointer to a UI_REGION object that
contains the window's user region. If this request is sent, data must be a pointer
to ULREGION.

I_GET_CURRENT—Returns a pointer to the current object in the window's
list. If this request is sent, data should be a pointer to UI_WINDOW_OBJECT.
If data is NULL, a pointer to the current object is returned as returnValue.

I_GET_DEFAULT_OBJECT—Returns a pointer to the window's default
button. If this request is sent, data should be a pointer to UI_WINDOW_-
OBJECT. If data is NULL, a pointer to the default object is returned as
returnValue.

I_GET_FIRST—Returns a pointer to the first object in the window's list. If
this request is sent, data should be a pointer to UI_WINDOW_OBJECT. If data
is NULL, a pointer to the first object is returned as returnValue.

I_GET_FLAGS—Requests the current flag settings for the object. If this
request is sent, data should be a pointer to a variable of type UIF_FLAGS, and
objectID should indicate the type of object with which the flags are associated.
For example, if the programmer wishes to obtain the WOF_FLAGS of an object,
objectID should be ID_WINDOW_OBJECT. If the WNF_FLAGS are desired,
objectID should be ID_WINDOW. This allows the object to process the request
at the proper level.

706 OpenZinc Application Framework—Programmer's Reference Volume 2

I_GET_LAST—Returns a pointer to the last object in the window's list. If this
request is sent, data should be a pointer to UI_WINDOW_OBJECT. If data is
NULL, a pointer to the last object is returned as returnValue.

I_GET_NUMBERID_OBJECT—Returns a pointer to an object whose
numberlD matches the value in data, if one exists. This object does a depth-first
search of the objects attached to it, looking for a match of the numberlD. If no
object has a numberlD that matches data, NULL is returned. If this message is
sent, data must be a pointer to a NUMBERID. Programmers should use a
window's numberlD with caution as it may change at run-time. For more
details, see the note accompanying the description of UI_WINDOW_-
OBJECT::NumberID() in "Chapter 43—UI_WINDOW_OBJECT" of
Programmer's Reference Volume 1.

I_GET_STRINGID_OBJECT—Returns a pointer to an object whose stringID
matches the character string in data, if one exists. This object does a depth-first
search of the objects attached to it looking for a match of the stringID. If no
object has a stringID that matches data, NULL is returned. If this message is
sent, data must be a pointer to a string.

I_GET_TEXT—Returns a pointer to the text associated with the window's title.
If this request is sent, data should be a doubly-indirected pointer to ZIL_ICHAR. If data is NULL, the title's text pointer will be returned as returnValue.
This request does not copy the text into a new buffer.

I_GET_SUPPORT_CURRENT—Returns a pointer to the current object in the
support list.

I_GET_SUPPORT_FIRST—Returns a pointer to the first object in the support
list.

I_GET_SUPPORT_LAST—Returns a pointer to the last object in the support
list.

I_INITIALIZE_CLASS—Causes the object to initialize any basic information
that does not require a knowledge of its parent or sibling objects. This request
is sent from the constructor of the object.

I_SET_DEFAULT_OBJECT—Sets the window's default button. If this request
is sent, data must be a pointer to the new default button.

Chapter 33 - UIW_WINDOW 707

I_SET_FLAGS—Sets the current flag settings for the object. If this request is
sent, data should be a pointer to a variable of type UIF_FLAGS that contains the
flags to be set, and objectID should indicate the type of object with which the
flags are associated. For example, if the programmer wishes to set the WOF_-
FLAGS of an object, objectID should be ID_WINDOW_OBJECT. If the
WNF_FLAGS are to be set, objectID should be ID_WINDOW. This allows the
object to process the request at the proper level. This request only sets those
flags that are passed in; it does not clear any flags that are already set.

I_SET_HSCROLL—Sets the horizontal scroll bar pointed to by hScroll to the
scroll bar pointer passed in event.data.

I_SET_TEXT—Sets the text associated with the window's title. This request
will also redisplay the object with the new text, data should be a pointer to the
new text.

I_SET_VSCROLL—Sets the vertical scroll bar pointed to by vScroll to the
scroll bar pointer passed in event.data.

All other requests are passed by Information) to UI_WINDOW_OBJECT::-
Information() for processing.

• datainjout is used to provide information to the function or to receive the information
requested, depending on the type of request. In general, this must be space allocated
by the programmer.

• objectIDin is a ZIL_OBJECTID that specifies which type of object the request is
intended for. Because the Information() function is virtual, it is possible for an
object to be able to handle a request at more than one level of its inheritance
hierarchy. objectID removes the ambiguity by specifying which level of an object's
hierarchy should process the request. If no value is provided for objectID, the object
will attempt to interpret the request with the objectID of the actual object type.

Example
#include <ui_win.hpp>
ExampleFunction() {

// Update the window's title.
window-information(I_SET_TEXT, "New Window")

708 OpenZinc Application Framework—Programmer's Reference Volume 2

UIW_WINDOW::Last

Syntax

#include <ui_win.hpp>

UI_WINDOW_OBJECT *Last(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function returns a pointer to the last object, if one exists, in the window. An MDI
parent window reorders the objects in its list dynamically so that the current MDI child
window is the last object in the parent's list, the next current MDI child is the next-to-last
object in the parent's list, and so forth. So, if the window is an MDI parent, this function
will return a pointer to the current MDI child.

• returnValueout is a pointer to the last object in the window. If there is no last object,
returnValue is NULL.

UIW_WINDOW::RegionMax

Syntax
#include <ui_win.hpp>

virtual void RegionMax(UI_WINDOW_OBJECT *object);

Chapter 33 - UIW_WINDOW 709

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This virtual function calculates how much space object can occupy within the window and
sets object->trueRegion accordingly. The regions occupied by objects that have the WOF_-
NON_FIELD_REGION flag set, such as the title and system button of a window, are not
included in the calculation as their regions are reserved. The regions of any other objects,
however, are still available and included in the total region, since these objects can
overlap with others.

• objectin is a pointer to the object that is requesting the maximum region of the
window. Its trueRegion member will be modified with its actual position.

UIW_WIN DOW::Scroll Event

Syntax
#include <ui_win.hpp>

virtual EVENT_TYPE ScrollEvent(UI_EVENT &event);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function handles events related to scrolling the window. Any events that may result
in the window's scroll region getting updated (e.g., S_CREATE, L_SIZE) will call this
function to update the scroll information. This function is used by OpenZinc. The programmer
typically will not call this function.

710 OpenZinc Application Framework—Programmer's Reference Volume 2

• returnValueout indicates how event was processed. If the event is processed
successfully, the function returns the logical type of event that was interpreted from
event. If the event could not be processed, S_UNKNOWN is returned.

• eventin contains a run-time scrolling message for the window object. The type of
operation performed depends on the event. The following logical events are
processed by ScrollEvent():

S_HSCROLL—Causes the window to scroll horizontally, event.scroll.delta
should contain the amount to scroll. The scroll information is updated and the
window's appearance is updated.

S_HSCROLL_SET—Sets the horizontal scroll information for the window and
the attached horizontal scroll bar, if one exists. If this event is sent, event.scroll
should contain the appropriate values.

S_HSCROLL_WINDOW—Causes the objects on the window to scroll
horizontally, event.scroll.delta should contain the amount to scroll.

S_SCROLLRANGE—Updates the scroll values maintained in scroll,
hScrollInfo and vScrollInfo. This event also updates the scroll bars' information,
if they exist.

S_VSCROLL—Causes the window to scroll vertically, event.scroll.delta should
contain the amount to scroll. The scroll information is updated and the
window's appearance is updated.

S_VSCROLL_SET—Sets the vertical scroll information for the window and the
attached vertical scroll bar, if one exists. If this event is sent, event.scroll should
contain the appropriate values.

S_VSCROLL_WINDOW—Causes the objects on the window to scroll
vertically, event.scroll.delta should contain the amount to scroll.

UIW_WINDOW::SetLanguage

Syntax
#include <ui_win.hpp>

void SetLanguage(const ZIL_ICHAR *languageName);

Chapter 33 - UIW_WINDOW 711

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function sets the language to be used by the object. The string translations for the
object will be loaded and the object's myLanguage member will be updated to point to
the new ZIL_LANGUAGE object. By default, the object uses the language identified in
the LANG_DEF.CPP file, which compiles into the library. (If a different default
language is desired, simply copy a LANG_<ISO>.CPP file from the OpenZinc\SOURCE\-
INTL directory to the \OpenZinc\SOURCE directory, and rename it to LANG_DEF.CPP
before compiling the library.) The language translations are loaded from the I18N.DAT
file, so it must be shipped with your application.

• languageNamein is the two-letter ISO language code identifying which language the
object should use.

UIW_WINDOW::StringCompare

Syntax
#include <ui_win.hpp>

static int StringCompare(void * object 1, void *object2);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function is used as the compare function if the WNF_AUTO_SORT flag is set on

712 OpenZinc Application Framework—Programmer's Reference Volume 2

the window. This function causes the objects to be sorted in ascending alphabetical order
when added to the window.

• returnValueout indicates the relative positioning of the two objects. returnValue is
negative if the text associated with objectl is alphabetically less than the text
associated with object2, 0 if the text associated with both objects is the same, or
positive if the text associated with objectl is alphabetically greater than the text
associated with object2.

• objectlin is a pointer to the first object to be compared.

• object2in is a pointer to the second object to be compared.

UIW_WINDOW: Subtract
UIW_WIN DOW::operator -

Syntax
#include <ui_win.hpp>

UI_WINDOW_OBJECT *Subtract(UI_WINDOW_OBJECT *object);
or

UIW_WINDOW &operator - (UI_WINDOW_OBJECT *object);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
These overloaded functions are used to subtract an object from the window. These
functions do not delete the objects, they merely remove them from the list. The
programmer is responsible for destroying any objects explicitly subtracted from the
window.

The first function subtracts an object from the UIW_WINDOW.

Chapter 33 - UIW_WINDOW 713

• returnValueout is a pointer to object if the subtraction was successful. Otherwise,
returnValue is NULL.

• objectin is a pointer to the object to be subtracted from the window.

The second overloaded operator subtracts an object from the UIW_WINDOW. This
operator overload is equivalent to calling the UIW_WINDOW::Subtract() function
except that it allows the chaining of object subtractions from the UIW_WINDOW.

• returnValueout is a pointer to the UIW_WINDOW. This pointer is returned so that
the operator may be used in a statement containing other operations.

• objectin is a pointer to the object that is to be subtracted from the window.

Example 1
#include <ui_win.hpp>

ExampleFunctionl(UI_WINDOW_OBJECT *objectl) {
// Construct a window, then add objects to it.
UIW_WINDOW windowl;
windowl.Add(object1);

// Delete a particular element from a list,
windowl.Subtract(object1);
delete objectl;

Example 2
ExampleFunction2(UI_WINDOW_OBJECT *objectl, UI_WINDOW_OBJECT *object2) {

// Construct a window, then add objects to it using the
// + operator overload.
UIW_WINDOW *windowl = new UIW_WINDOW(0, 0, 40, 15);
*windowl + objectl + object2;

// Move objects from windowl to window2.
UIW_WINDOW *window2 = new UIW_WINDOW;

while (windowl->First()) {
UI_WINDOW_OBJECT *object = windowl->First();
•windowl - object;

714 OpenZinc Application Framework—Programmer's Reference Volume 2

*window2 + object;
}

Storage Members

This section describes those class members that are used for storage purposes.

UIW_WINDOW::UIW_WINDOW

Syntax
#include <ui_win.hpp>

UIW_WINDOW(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object,
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows
• Macintosh • OSF/Motif • Curses

• OS/2
• NEXTSTEP

Remarks
This advanced constructor creates a new UIW_WINDOW by loading the object from a
data file.

• namein is the name of the object to be loaded.

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

Chapter 33 - UIW_WINDOW 715

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT::objectTable in "Chapter 43—UIJWIN-
DOW_OBJECT" in Programmer's Reference Volume |. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT:. userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

UIW_WI N DOW::Load

Syntax
#include <ui_win.hpp>

virtual void Load(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced function is used to load a UIW_WINDOW from a persistent object data

716 OpenZinc Application Framework—Programmer's Reference Volume 2

file. It is called by the persistent constructor and is typically not used by the programmer.

• namein is the name of the object to be loaded.

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT::objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOWJ)BJECT::userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

UIW_WINDOW::New

Syntax
#include <ui_win.hpp>

static UI_WINDOW_OBJECT *New(const ZIL_ICHAR *name,
ZIL_STORAGE_READ_ONLY *file =

ZIL_NULLP(ZIL_STORAGE_READ_ONLY),
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY),
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

Chapter 33 - UIW_WINDOW 717

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced function is used to load a persistent object from a data file. This function
is a static class member so that its address can be placed in a table used by the library to
load persistent objects from a data file.

NOTE: The application must first create a display if objects are to be loaded from a data
file.

• namein is the name of the object to be loaded.

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT: .objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT::userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

718 OpenZinc Application Framework—Programmer's Reference Volume 2

UIW_WINDOW::NewFunction

Syntax
#include <ui_win.hpp>

virtual ZIL_NEW_FUNCTION NewFunction(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks

This virtual function returns a pointer to the object's New() function.

• returnValueout is a pointer to the object's New() function.

UIW_ Wl N DO W::Store

Syntax
#include <ui_win.hpp>

virtual void Store(const ZIL_ICHAR *name,
ZIL_STORAGE *file = ZIL_NULLP(ZIL_STORAGE),
ZIL_STORAGE_OBJECT *object = ZIL_NULLP(ZIL_STORAGE_OBJECT),
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Chapter 33 - UIW_WINDOW 719

Remarks
This advanced function is used to write an object to a data file.

• namein is the name of the object to be stored.

• filein is a pointer to the ZIL_STORAGE where the persistent object will be stored.
For more information on persistent object files, see "Chapter 66—ZIL_STORAGE"
of Programmer's Reference Volume 1.

• object^ is a pointer to the ZIL_STORAGE_OBJECT where the persistent object
information will be stored. This must be allocated by the programmer. For more
information on loading persistent objects, see "Chapter 68—ZIL_STORAGE_-
OBJECT" of Programmer's Reference Volume 1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT:.objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT::userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

720 OpenZinc Application Framework—Programmer's Reference Volume 2

CHAPTER 34 - ZAF DIALOG WINDOW

The ZAF_DIALOG_WINDOW class displays a message and one or more response
buttons. Program flow halts until the end-user responds to the message by selecting one
of the buttons. The buttons are defined by the programmer, but at least one button should
place an event on the queue whose value is between DLG_DIALOG_FIRST and DLG_-
DIALOG_LAST (e.g., DLG_DIALOG_FIRST + 10). The window will not close and
control will not return to the program until such an event is processed. The space from
DLG_DIALOG_USER to DLG_DIALOG_LAST is reserved for user defined types. The
figure below shows a graphical representation of a typical dialog window:

The ZAF_DIALOG_WINDOW class is declared in UI_WIN.HPP. Its public and
protected members are:

class ZIL_EXPORT_CLASS ZAF_DIALOG_WINDOW : public UIW_WINDOW
{
public:

ZAF_DIALOG_WINDOW(int left, int top, int width, int height,
WOF_FLAGS woFlags = WOF_NO_FLAGS,
WOAF_FLAGS woAdvancedFlags = WOAF_NO_FLAGS,
UI_HELP_CONTEXT helpContext = NO_HELP_CONTEXT) ;

virtual ~ZAF_DIALOG_WINDOW(void);
EVENT_TYPE Control(void);

#if defined(ZIL_LOAD)
static UI_WINDOW_OBJECT *New(const ZIL_ICHAR *name,

ZIL_STORAGE_READ_ONLY *file = ZIL_NULLP(ZIL_STORAGE_READ_ONLY) ,
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY),
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM) ,
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

ZAF_DIALOG_WINDOW(const ZIL_ICHAR *name,
ZIL_STORAGE_READ_ONLY *file = ZIL_NULLP(ZIL_STORAGE_READ_ONLY),
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY),
UI_ITEM *objectTable = ZIL_NULLP (UI_ITEM) ,
UI_ITEM *userTable = ZIL_NULLP (UI_ITEM)) ;
virtual void Load (const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,

ZIL_STORAGE_OBJECT_READ_ONLY *object, UI_ITEM *objectTable,

Chapter 34 - ZAF_DIALOG_WINDOW 721

UI_ITEM *userTable);
#endif
#if defined(ZIL_STORE)

virtual void Store(const ZIL_ICHAR *name, ZIL_STORAGE *file,
ZIL_STORAGE_OBJECT *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

#endif
} ;

General Members

This section describes those members that are used for general purposes.

ZAF_DIALOG WINDOW::ZAF_DIALOG_WINDOW

Syntax
#include <ui_win.hpp>

ZAF_DIALOG_WINDOW(int left, int top, int width, int height,
WOF_FLAGS woFlags = WOF_NO_FLAGS,
WOAF_FLAGS woAdvancedFlags = WOAF_NO_FLAGS,
UI_HELP_CONTEXT helpContext = NO_HELP_CONTEXT);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This constructor creates a dialog window object. After the dialog window is created, the
window's Control() function should be called. This will display the window and halt
program flow until the user responds by selecting a button. The return value from
Control() will indicate the user response. The message displayed on the window should
be phrased so that the action initiated by selecting one of the response buttons provided
will be clear.

722 OpenZinc Application Framework—Programmer's Reference Volume 2

• leftin and topin is the starting position of the window. Typically, these values are in
cell coordinates. If the WOF_MINICELL flag is set, however, these values will be
interpreted as minicell values.

• widthin is the width of the window. Typically, this value is in cell coordinates. If the
WOF_MINICELL flag is set, however, this value will be interpreted as a minicell
value.

• heightin is the height of the window. Typically, this value is in cell coordinates. If
the WOF_MINICELL flag is set, however, this value will be interpreted as a minicell
value.

• woFlagsin are flags (common to all window objects) that determine the general
operation of the dialog window. The following flags (declared in UI_WIN.HPP)
affect the operation of a ZAF_DIALOG_WINDOW class object:

WOF_BORDER—Draws a border around the object. The graphical border's
appearance will depend on the operating system used, and, if in DOS, on the
graphics style being used. In text mode, a border may or may not be drawn,
depending on the text style being used. See "Appendix A—Support
Definitions" in this manual for information on changing DOS graphics mode
styles and text mode styles. This flag should not be used if the window has a
UIW_BORDER object.

WOF_MINICELL—Causes the position and size values that were passed into
the constructor to be interpreted as minicells. A minicell is a fraction the size
of a normal cell. Greater precision in object placement is achieved by specifying
an object's position in minicell coordinates. A minicell is 1/1 Oth the size of a
normal cell by default.

WOF_NO_FLAGS—Does not associate any special window flags with the
object. This flag should not be used in conjunction with any other WOF flags.
This flag is set by default in the constructor.

WOF_NON_FIELD_REGION—Causes the object to ignore its position and
size parameters and use the remaining available space in its parent object.

• woAdvancedFlagsin are flags (common to all window objects) that determine the
advanced operation of the window. The following flags (declared in UI_WIN.HPP)
control the advanced operation of a window:

Chapter 34 - ZAF_DIALOG_WINDOW 723

WOAF_DIALOG_OBJECT—Creates the window as a dialog box. A dialog
box is a temporary window used to display or receive information from the user.
Using this flag will cause a special dialog style border to be displayed.

NOTE: Some operating environments (e.g, Windows) will create a border,
system button and title for a dialog window. Other environments (e.g., DOS)
may not, and so a border, system button and title must be added to the dialog
window by the programmer. OpenZinc will ignore any support objects in
environments that automatically provide them, such as Windows.

WOAF_LOCKED—Prevents the Window Manager from removing the window
from the display. The WOAF_LOCKED flag must be cleared before the
Window Manager will allow the window to be removed from the display.

WOAF_MODAL—Prevents any other window from receiving events from the
Window Manager. A modal window receives all events until it is removed from
the display.

WOAF_NO_DESTROY—Prevents the window from being destroyed when it
is closed. If this flag is set, the window can be removed from the display, but
the programmer is responsible for destroying the window.

WOAF_NO_FLAGS—Does not associate any special advanced flags with the
window object. This flag should not be used in conjunction with any other
WOAF flags. This flag is set by default in the constructor.

WOAF_NO_MOVE—Prevents the end-user from changing the screen location
of the window at run-time. This flag must be set if the window is to be a non-
MDI child.

WOAF_NO_SIZE—Prevents the end-user from changing the size of the window
at run-time. This flag must be set if the window is to be a non-MDI child.

WOAF_NORMAL_HOT_KEYS—Allows the end-user to select an option
using its hotkey by pressing the hotkey by itself, without the <Alt> key
otherwise required for selecting with a hotkey. Care should be taken when using
this flag on a window, as editable objects will no longer work properly.

WOAF_TEMPORARY—Causes the window to be displayed temporarily. If
another window is made current or a non-temporary window is added to the
Window Manager, all temporary windows are removed automatically by the
Window Manager.

724 OpenZinc Application Framework—Programmer's Reference Volume 2

• helpContextin identifies the help information associated with the window. helpContext
is a help context that was created for the help system. If the end-user presses the
help key while on this window, and the current object on the window does not have
a help context, this help context will be used to display help. For more information
about the help system and help context information see "Chapter 17—UI_HELP_-
SYSTEM" of Programmer's Reference Volume 1.

ZAF_DIALOG_WINDOW::~ZAF_DIALOG_WINDOW

Syntax
#include <ui_win.hpp>

virtual ~ZAF_DIALOG_WINDOW(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This virtual destructor destroys the class information associated with the ZAF_DIALOG_-
WINDOW object. All objects attached to the dialog window will also be destroyed.

ZAF_DIALOG_WINDOW::Control

Syntax

#include <ui_win.hpp>

EVENT_TYPE Control(void);

Chapter 34 - ZAF_DIALOG_WINDOW 725

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This function is used as a control loop for the dialog window. The function adds the
window to the Window Manager and does not release control until the window has been
closed or an option on the window has been chosen. At least one button should be placed
on the window with the BTF_SEND_MESSAGE flag set and a value in the range from
DLG_DIALOG_FIRST to DLG_DIALOG_LAST. The window is removed from the
Window Manager before the function returns, but is not deleted.

• returnValueout indicates the value of the option selected by the end-user. The value
will be in the range from DLG_DIALOG_FIRST to DLG_DIALOG_LAST.

Storage Members

This section describes those class members that are used for storage purposes.

ZAF_DIALOG_WINDOW::ZAF_DIALOG_WINDOW

Syntax
#include <ui_win.hpp>

ZAF_DIALOG_WINDOW(const ZIL_ICHAR *name,
ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object,
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

726 OpenZinc Application Framework—Programmer's Reference Volume 2

Portability
This function is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics • Windows
• OSF/Motif • Curses

• OS/2
• NEXTSTEP

Remarks
This advanced constructor creates a new ZAF_DIALOG_WINDOW by loading the object
from a data file.

• namein is the name of the object to be loaded.

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT:.objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT:. userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

Chapter 34 - ZAF_DIALOG_WINDOW 727

ZAF_DI ALOG_WIN DO W::Load

Syntax
#include <ui_win.hpp>

virtual void Load(const ZIL_ICHAR *name, ZIL_STORAGE_READ_ONLY *file,
ZIL_STORAGE_OBJECT_READ_ONLY *object, UI_ITEM *objectTable,
UI_ITEM * userTable);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh •OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced function is used to load a ZAF_DIALOG_WINDOW from a persistent
object data file. It is called by the persistent constructor and is typically not used by the
programmer.

• namein is the name of the object to be loaded.

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT::objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

728 OpenZinc Application Framework—Programmer's Reference Volume 2

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT::userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

ZAF_DIALOG_WINDOW::New

Syntax
#include <ui_win.hpp>

static UI_WINDOW_OBJECT *New(const ZIL_ICHAR *name,
ZIL_STORAGE_READ_ONLY *file =

ZIL_NULLP(ZIL_STORAGE_READ_ONLY),
ZIL_STORAGE_OBJECT_READ_ONLY *object =

ZIL_NULLP(ZIL_STORAGE_OBJECT_READ_ONLY),
UI_ITEM *objectTable = ZIL_NULLP(UI_ITEM),
UI_ITEM *userTable = ZIL_NULLP(UI_ITEM));

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This advanced function is used to load a persistent object from a data file. This function
is a static class member so that its address can be placed in a table used by the library to
load persistent objects from a data file.

NOTE: The application must first create a display if objects are to be loaded from a data
file.

• namein is the name of the object to be loaded.

Chapter 34 - ZAF_DIALOG_WINDOW 729

• filein is a pointer to the ZIL_STORAGE_READ_ONLY object that contains the
persistent object. For more information on persistent object files, see "Chapter
70—ZIL_STORAGE_READ_ONLY" of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT_READ_ONLY where the
persistent object information will be loaded. This must be allocated by the
programmer. For more information on loading persistent objects, see "Chapter
69—ZIL_STORAGE_OBJECT_READ_ONLY" of Programmer's Reference Volume
L

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT:.objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT::userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

ZAF DIALOG_WINDOW::Store

Syntax
#include <ui_win.hpp>

virtual void Store(const ZIL_ICHAR *name, ZIL_STORAGE *file,
ZIL_STORAGE_OBJECT *object, UI_ITEM *objectTable,
UI_ITEM *userTable);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

730 OpenZinc Application Framework—Programmer's Reference Volume 2

Remarks
This advanced function is used to write an object to a data file.

• namein is the name of the object to be stored.

• filein is a pointer to the ZIL_STORAGE where the persistent object will be stored.
For more information on persistent object files, see "Chapter 66—ZIL_STORAGE"
of Programmer's Reference Volume 1.

• objectin is a pointer to the ZIL_STORAGE_OBJECT where the persistent object
information will be stored. This must be allocated by the programmer. For more
information on loading persistent objects, see "Chapter 68—ZIL_STORAGE_-
OBJECT" of Programmer's Reference Volume 1.

• objectTablein is a pointer to a table that contains the addresses of the static New()
member functions for all persistent objects. For more details about objectTable see
the description of UI_WINDOW_OBJECT:.objectTable in "Chapter 43—UI_WIN-
DOW_OBJECT" in Programmer's Reference Volume 1. If objectTable is NULL,
the library will use the object table created by the Designer, if one was linked into
the program, or, if no Designer-created table exists, it will use a default empty table.

• userTablein is a pointer to a table that contains the addresses of user objects, user
functions and compare functions. For more details about userTable see the
description of UI_WINDOW_OBJECT::userTable in "Chapter 43—UI_WINDOW_-
OBJECT" in Programmer's Reference Volume 1. If userTable is NULL, the library
will use the user table created by the Designer, if one was linked into the program,
or, if no Designer-created table exists, it will use a default empty table.

Chapter 34 - ZAF_DIALOG_WINDOW 731

OpenZinc Application Framework—Programmer's Reference Volume 2 732

CHAPTER 35 - ZAF_MESSAGE_WINDOW

The ZAF_MESSAGE_WINDOW class is a type of dialog window that displays a
message and one or more response buttons. Program flow halts until the end-user
responds to the message by selecting one of the buttons. The response buttons are all pre-
defined for use by the message window. The figure below shows a graphical
representation of a typical message window:

The ZAF_MESSAGE_WINDOW class is declared in UI_WIN.HPP. Its public and
protected members are:

class ZIL_EXPORT_CLASS ZAF_MESSAGE_WINDOW : p u b l i c UIW_WINDOW {
publ ic :

ZAF_MESSAGE_WINDOW(ZIL_ICHAR *title, ZIL_ICHAR *icon,
MSG_FLAGS msgFlags, MSG_FLAGS defFlag, ZIL_ICHAR * format, ...);

virtual ~ZAF_MESSAGE_WINDOW(void);
EVENT_TYPE Control(void);

} ;

General Members

This section describes those members that are used for general purposes.

Chapter 35 - ZAF_MESSAGE_WINDOW 733

ZAF_MESSAGE_WINDOW::ZAF_MESSAGE_WINDOW

Syntax
#include <ui_win.hpp>

ZAF_MESSAGE_WINDOW(ZIL_ICHAR *title, ZIL_ICHAR *icon,
MSG_FLAGS msgFlags, MSG_FLAGS defFlag, ZIL_ICHAR *format, ...);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This constructor creates a message window object. After the message window is created,
the window's Control() function should be called. This will display the message
window and halt program flow until the user responds by selecting a button. The return
value from Control() will indicate the user response. The message displayed on the
window should be phrased so that the action initiated by selecting one of the response
buttons provided will be clear.

• titlein is the string to be displayed in the message window's title bar.

• iconin is the name of an icon as it is stored in the UI_WINDOW_OBJECT:.default-
Storage .DAT file or resource file. The icon will be displayed on the window next
to the text.

• rnsgFlagsin specifies which response buttons should be placed on the window. The
following flags are available:

ZIL_MSG_ABORT—Causes a button with the text "Abort" (or the appropriate
translation) to be placed on the window.

ZIL_MSG_CANCEL—Causes a button with the text "Cancel" (or the
appropriate translation) to be placed on the window.

734 OpenZinc Application Framework—Programmer's Reference Volume 2

ZIL_MSG_HELP—Causes a button with the text "Help" (or the appropriate
translation) to be placed on the window.

ZIL_MSG_IGNORE—Causes a button with the text "Ignore" (or the
appropriate translation) to be placed on the window.

ZIL_MSG_NO—Causes a button with the text "No" (or the appropriate
translation) to be placed on the window.

ZIL_MSG_OK—Causes a button with the text "Ok" (or the appropriate
translation) to be placed on the window.

ZIL_MSG_RETRY—Causes a button with the text "Retry" (or the appropriate
translation) to be placed on the window.

ZIL_MSG_YES—Causes a button with the text "Yes" (or the appropriate
translation) to be placed on the window.

• defFlagin specifies which of the buttons should be the default button. defFlag must
be one of the flags set in msgFlags.

• formatin is the printf style format string that specifies how the message string is to
be displayed.

• ...in is the variable-length argument list that contains any arguments required by
format.

ZAF_MESSAGE_WINDOW::Control

Syntax

#include <ui_win.hpp>

EVENT_TYPE Control(void);

Portability
This function is available on the following environments:

• DOS Text • DOS Graphics • Windows
• Macintosh • OSF/Motif • Curses

• OS/2
• NEXTSTEP

Chapter 35 - ZAF_MESSAGE_WINDOW 735

Remarks
This function is used as a control loop for the message window. The function adds the
window to the Window Manager and does not release control until the window has been
closed or an option on the window has been chosen. The window is removed from the
Window Manager before the function returns, but is not deleted.

• returnValueout indicates the value of the option selected by the end-user. The
following values can be returned:

ZIL_DLG_ABORT—Indicates that the Abort button was selected.

ZIL_DLG_CANCEL—Indicates that the Cancel button was selected.

ZIL_DLG_HELP—Indicates that the Help button was selected.

ZIL_DLG_IGNORE—Indicates that the Ignore button was selected.

ZIL_DLG_NO—Indicates that the No button was selected.

ZIL_DLG_OK—Indicates that the Ok button was selected.

ZIL_DLG_RETRY—Indicates that the Retry button was selected.

ZIL_DLG_YES—Indicates that the Yes button was selected.

736 OpenZinc Application Framework—Programmer's Reference Volume 2

APPENDIX A - SUPPORT DEFINITIONS

This appendix describes various support items of OpenZinc Application Framework. The first
section lists typedefs and preprocessor variables. The second section lists macros.

Typedefs and Preprocessor Variables

FALSE
This is a boolean value. OpenZinc defines FALSE to have a value of zero if it is not already
defined by the compiler.

TRUE
This is a boolean value. OpenZinc defines TRUE to have a value of one if it is not already
defined by the compiler.

ZIL_BAK
This is the default string used as the extension for a backup file.

ZIL_BIGENDIAN
This precompiler variable is defined by the library if the environment's values are
interpreted in big-endian fashion. This precompiler variable may need to be defined if
porting the library to an unsupported environment.

ZIL_BITMAP_HANDLE
This type is defined to be the bitmap handle type supported by the graphical environment,
if any. For example, Windows has an HBITMAP type that it uses to process bitmaps.
If the graphical environment uses its own bitmap format, it is usually more efficient to
use that format and ZIL_BITMAP_HANDLE will be defined as the appropriate type.
If the graphical environment does not support its own bitmap type, ZIL_BITMAP_-
HANDLE is simply a pointer to ZIL_UINT8.

Appendix A - Support Definitions 737

ZIL_COLOR

This type is defined to be the color type supported by the graphical environment, if any.
Some environments might support 24-bit color while others might only support 8-bits.

ZIL_COMPARE_FUNCTION
This typedef is a function with the following signature:

typedef int (*ZIL_COMPARE_FUNCTION)(void *, void *);

This type of function is used with lists or list objects when user-defined sorting is to be
imposed on objects added to the list.

ZIL_DECOMPOSE
Enables character decomposition in Unicode mode. If a Unicode character is composed
of a character and one or more modifier characters, in some instances it may need to be
split up, or decomposed, into the individual characters for purposes of collating. If this
precompiler variable is defined when the library is compiled, the decomposition
functionality will be enabled. Otherwise, the library will not allow nor use decomposition.
If desired, this precompiler variable should be defined in UI_ENV.HPP when compiling
the library.

ZIL_D0_FILE_I18N
Allows loading of map tables, language information and locale information from a .DAT
file. If this precompiler variable is defined, this information will be loaded at run-time.
Otherwise, this information is obtained from the default information that was compiled
in the library. If desired, this precompiler variable should be defined in UI_ENV.HPP
when compiling the library. This precompiler variable is defined by default.

ZIL_DO_OS_I18N
Allows loading of language and locale information from the operating system. If this
precompiler variable is defined, this information will be obtained from the operating
system at run-time. Otherwise, this information is obtained from the default information
that was compiled in the library. If desired, this precompiler variable should be defined
in UI_ENV.HPP when compiling the library. This precompiler variable is defined by
default.

738 OpenZinc Application Framework—Programmer's Reference Volume 2

ZIL_EXIT_FUNCTION
This typedef is a function with the following signature:

typedef EVENT_TYPE (*ZIL_EXIT_FUNCTION)(UI_DISPLAY *,
UI_EVENT_MANAGER *, UI_WINDOW_MANAGER *);

This type of function is used to perform an action when the user attempts to exit the
application.

ZIL_EXT
This is the default string used as the extension for a .DAT file.

ZIL_HARDWARE
Enables support for non-AT DOS machines, such as the NEC PC 9800 series. If this
precompiler variable is defined when the library is compiled, the library will be built to
work with non-AT DOS machines. Otherwise, the library will only work with AT
compatible machines. If desired, this precompiler variable should be defined in
UI_ENV.HPP when compiling the library. If this precompiler variable is defined, several
source modules will also need to be compiled and linked into the library. In the makefiles
in the OpenZinc\SOURCE directory there are definitions for DOSHARDWAREDEP and
DOSHARDWARELIB. By default these variables compile and link in modules for the
AT machines (e.g., i_btcat.obj). There are similar modules for the NEC machine (e.g.,
ijbtcnec.obj) that should either replace the AT modules if only NEC support is required,
or should be used in addition to the AT modules if the executable should support both
hardware environments.

ZIL_HOTMARK
This is the character used to identify a hotkey character for an object. By default,
ZIL_HOTMARK is the '&' character. Thus, if a string passed to an object that supports
hotkeys contains an '&' the character immediately following the '&' will be designated
as the hotkey for the object. Extreme care should be taken if changing the hotkey
designator, as objects stored in .DAT files that used a different hotkey designator will no
longer work.

Appendix A - Support Definitions 739

ZIL_IBIGNUM

This is a 32-bit signed integer. This type is used with the ZIL_BIGNUM class, which,
in turn, is used with the UIW_BIGNUM object.

ZIL_ICHAR

This is a character type that resolves to different types depending on the environment and
whether Unicode is supported. In environments that support the Unicode character set,
this type may be the wide character type (e.g., wchar_t) defined in that environment if
the wide character type is known to be properly defined—not all environments that define
wchar_t define it correctly. If the environment does not support Unicode directly, but
OpenZinc is being used in Unicode mode, then this type is ZIL_UINT16, a 16-bit unsigned
integer type. Otherwise this type resolves to a char type. This type should be used
instead of char or wchar_t so that the application will be as portable as possible between
compilers and operating systems.

ZIL_ICON_HANDLE
This type is defined to be the icon handle type supported by the graphical environment,
if any. For example, Windows has an HICON type that it uses to process icons. If the
graphical environment uses its own icon format, it is usually more efficient to use that
format and ZIL_ICON_HANDLE will be defined as the appropriate type. If the
graphical environment does not support its own icon type, ZIL_BITMAP_HANDLE is
simply a pointer to ZIL_UINT8.

ZIL_INT8

This is an 8-bit signed type. This type should be used wherever the type must be
guaranteed to be 8-bits signed; for example, when storing a value in one environment and
reading it in another.

ZIL_INT16

This is a 16-bit signed type. This type should be used wherever the type must be
guaranteed to be 16-bits signed; for example, when storing a value in one environment
and reading it in another.

740 OpenZinc Application Framework—Programmer's Reference Volume 2

ZIL_INT32

This is a 32-bit signed type. This type should be used wherever the type must be
guaranteed to be 32-bits signed; for example, when storing a value in one environment
and reading it in another.

ZIL_LITTLEENDIAN
This precompiler variable is defined by the library if the environment's values are
interpreted in little-endian fashion. This precompiler variable may need to be defined if
porting the library to an unsupported environment.

ZIL_LOAD
Enables the load functionality of the storage classes. If this precompiler variable is
defined when the library is compiled, the load functionality will be enabled. Otherwise,
the load functionality will not be available. If desired, this precompiler variable should
be defined in UI_ENV.HPP when compiling the library. This precompiler variable is
defined by default.

ZIL_MACINTOSH
This precompiler variable is defined by the library when compiling the library or an
application for the Macintosh. This precompiler variable can be used to "if def"
platform-specific code, if desired.

ZIL_MAXPATHLEN
This is the maximum path length allowed by the operating system for which the library
is compiled.

ZIL_MOTIF
This precompiler variable is defined by the library when compiling the library or an
application for Motif. This precompiler variable can be used to "if def" platform-specific
code, if desired.

Appendix A - Support Definitions 741

ZIL_MOTIF_STYLE
If this precompiler variable is defined, the DOS graphics mode appearance will be similar
to the default Motif style. If desired, this precompiler variable should be defined in
UI_ENV.HPP when compiling the library.

ZIL_MSDOS
This precompiler variable is defined by the library when compiling the library or an
application for MS-DOS. This precompiler variable can be used to "if def" platform-
specific code, if desired.

ZIL_MSWINDOWS
This precompiler variable is defined by the library when compiling the library or an
application for MS-Windows 3.x. This precompiler variable can be used to "if def"
platform-specific code, if desired.

ZIL_MSWINDOWS_STYLE
If this precompiler variable is defined, the DOS graphics mode appearance will be similar
to the default Windows 3.X style. If desired, this precompiler variable should be defined
in UI_ENV.HPP when compiling the library. This precompiler variable is defined by
default.

ZIL_NEW_FUNCTION
This typedef is a function with the following signature:

typedef UI_WINDOW_OBJECT *(*ZIL_NEW_FUNCT10N)(const ZIL_ICHAR *,
ZIL_STORAGE_READ_ONLY *, ZIL_STORAGE_OBJECT_READ_ONLY *,
UI_ITEM *, UI_ITEM *);

This type of function is used to load persistent objects from a persistent object file.

ZIL_NUMBERID
This typedef is used to give objects a unique value that can be used to identify the object
in the context of its parent.

742 OpenZinc Application Framework—Programmer's Reference Volume 2

ZIL_OLD_DEFS
Turns on backwards compatibility of names. If an application was written using a
previous version of the library, it should still compile if ZIL_OLD_DEFS is defined in
UI_ENV.HPP. It is preferable to upgrade applications rather than use this precompiler
variable so that the application can take advantage of current functionality as well as to
ensure that future upgrades will be as effortless as possible.

ZIL_OS2
This precompiler variable is defined by the library when compiling the library or an
application for OS/2. This precompiler variable can be used to "if def" platform-specific
code, if desired.

ZIL_OS2_STYLE
If this precompiler variable is defined, the DOS graphics mode appearance will be similar
to the default OS/2 style. If desired, this precompiler variable should be defined in
UI_ENV.HPP when compiling the library.

ZIL_PATHSEP
This is the character used by the operating system to separate individual path nodes in a
path string.

ZIL_POSIX
This precompiler variable is defined by the library when compiling the library or an
application for a Posix-compliant environment. This precompiler variable can be used to
"if def" platform-specific code, if desired.

ZIL_RBIGNUM
This is a double-precision floating point type. This type is used with the ZIL_BIGNUM
class, which, in turn, is used with the UIW_BIGNUM object.

ZIL_SCREENID
This type is used to identify an object or its type as required by the environment. In DOS

Appendix A - Support Definitions 743

and Curses, ZIL_SCREENID is used to identify a window region reserved for use by the
object. In Windows, Windows NT, OS/2 and Macintosh, ZIL_SCREENID is the handle
type (e.g., HWND) used by the operating system to identify objects. In Motif,
ZIL_SCREENID is the Widget type, used to identify what type of Widget the object is.

ZIL_SHADOW_BORDER
If this precompiler variable is defined, the border on DOS text mode windows will appear
as a shadow border. If desired, this precompiler variable should be defined in
UI_ENV.HPP when compiling the library. This precompiler variable is defined by
default.

ZIL_STANDARD_BORDER
If this precompiler variable is defined, the borders on DOS text mode windows will
appear as standard single- and double-line borders. If desired, this precompiler variable
should be defined in UI_ENV.HPP when compiling the library.

ZIL_STORE
Enables the store functionality of the storage classes. If this precompiler variable is
defined when the library is compiled, the store functionality will be enabled. Otherwise,
the store functionality will not be available. If desired, this precompiler variable should
be defined in UI_ENV.HPP when building the library. This precompiler variable is
defined by default.

ZIL_TEXT_ONLY
Prevents any code that is specific to graphics mode from being compiled into the library.
If this precompiler variable is defined when the library is compiled, only text mode code
will be put in the library. Otherwise, both text mode and graphics mode code will be
placed in the library. If desired, this precompiler variable should be defined in
UI_ENV.HPP when building the library.

ZIL_3D_BORDER
If this precompiler variable is defined, objects in DOS text mode will have a three-
dimensional appearance. However, the objects will require much more screen space. If

744 OpenZinc Application Framework—Programmer's Reference Volume 2

desired, this precompiler variable should be defined in UI_ENV.HPP when compiling the
library.

ZIL_3x_COMPAT
If this precompiler variable is defined, objects in 3.x .DAT files will be read in 3.x
format. Specifically, date ranges in 4.x are specified differently than in 3.x versions. If
this precompiler variable is defined, date ranges will be read assuming the 3.x format and
a U.S. format. Otherwise, they will be read assuming they are in the 4.x format, which
requires a full year, month and day of month, separated by dashes (i.e.,'-'). If desired,
this precompiler variable should be defined in UI_ENV.HPP when compiling the library.
Old .DAT files should be updated as soon as possible to take advantage of 4.x features
and to make future upgrades as effortless as possible.

ZIL_UINT8
This is an 8-bit unsigned type. This type should be used wherever the type must be
guaranteed to be 8-bits unsigned; for example, when storing a value in one environment
and reading it in another.

ZIL_UINT16
This is a 16-bit unsigned type. This type should be used wherever the type must be
guaranteed to be 16-bits unsigned; for example, when storing a value in one environment
and reading it in another.

ZIL_UINT32
This is a 32-bit unsigned type. This type should be used wherever the type must be
guaranteed to be 32-bits unsigned; for example, when storing a value in one environment
and reading it in another.

ZIL_UNICODE
Enables Unicode functionality. If this precompiler variable is defined when the library
is compiled, the Unicode functionality will be enabled. Otherwise, the library will be
compiled for 8-bit character use. If desired, this precompiler variable should be defined
in UI_ENV.HPP when compiling the library.

Appendix A - Support Definitions 745

ZIL_USER_FUNCTION
This typedef is a function with the following signature:

typedef EVENT_TYPE (*ZIL_USER_FUNCTION)(UI_WINDOW_OBJECT *,
UI_EVENT &, EVENT_TYPE);

This type of function is used to perform an action when an object with which the function
is associated is acted on.

ZIL_WINNT
This precompiler variable is defined by the library when compiling the library or an
application for MS-Windows NT. This precompiler variable can be used to "if def"
platform-specific code, if desired.

Macros

AbsValue

Syntax
include <ui_env.hpp>

#define AbsValue(arg) ((arg) > 0 ? (arg) : -(arg))

Portability
This macro is available on the following environments:

• OS/2
• NEXTSTEP

DOS Text • DOS Graphics • Windows
Macintosh • OSF/Motif • Curses

Remarks
This macro returns the absolute value of arg.

746 OpenZinc Application Framework—Programmer's Reference Volume 2

Example
#include <ui_env.hpp>

ExampleFunction(int value) {
if (AbsValue(value) < 256)
{

} }

attrib

Syntax
#include <ui_dsp.hpp>

#if defined(ZIL_CURSES)
if defined(SCO_UNIX)
define attrib(foreground, background)

(COLOR_PAIR(foreground « 3 | background))
else
define attrib (foreground, background) (0)
endif
#else
define attrib(foreground, background) (((background) « 4) + (foreground))
#endif

Portability
This macro is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This macro combines text foreground and background color values into one value that the
operating system can use. attrib is used by the UI_PALETTE structure to describe color
and monochrome text attributes.

Appendix A - Support Definitions 747

Example
#include <ui_dsp.hpp>

static UI_PALETTE backgroundPalette = {
' \260', attrib(BLUE, BLACK), attrib{MONO_DIM, MONO_BLACK),
PTN_INTERLEAVE_FILL, BLUE, BLUE, BW_WHITE, BW_WHITE, GS_GRAY, GS_GRAY

} ;
static UI_PALETTE xorPalette = {

'\260', attrib(BLUE, BLACK), attrib(MONO_DIM, MONO_BLACK),
PTN_SOLID_FILL, LIGHTGRAY, LIGHTGRAY, BW_WHITE, BW_WHITE, GS_GRAY, GS_GRAY

} ;

FlagSet

Syntax
include <ui_env.hpp>

#define F\agSet(flagl,flag2) ((flagl) & (flag2))

Portability
This macro is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This macro determines if any flags set in flag2 are set in flagl. It does this by AND'ing
the two values together. For example, if one argument were a 0 and the other were a 1,
the result would be FALSE, since there are no bits in the arguments that overlap. On the
other hand, if one argument were 0x0001 and the other were 0x0101, the result would be
0x0001 (TRUE).

Example
#include <ui_win.hpp>

void ExampleFunction (UIF_FLAGS flags) {
if FlagSet(flags, WOF_NO_ALLOCATE_DATA)
{

748 OpenZinc Application Framework—Programmer's Reference Volume 2

} }

FlagsSet

Syntax
#include <ui_env.hpp>

#define FlagsSet(flagl, flag2) (((flagl) & (flag2)) = (flag2))

Portability
This macro is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This macro is similar to FlagSet, except that it checks to see if all the flags set in flag2
are set in flagl. It does this by AND'ing the two values together and comparing the
result to flag2. If the results are the same, the macro evaluates to TRUE. Otherwise it
is FALSE. For example, if one flag were a 0 and the other were a 1, the result would be
0 (FALSE), since there are no flags that overlap. If flagl were 0x0100 and flag2 were
OxOFOO, the result would be 0x0100, which is also FALSE, while these flags reversed
(i.e., OxOFOO, 0x0100) would result in TRUE.

Both FlagSet and FlagsSet are used extensively throughout the library when comparing
window flags (i.e., WOF_FLAGS and WOAF_FLAGS) or when comparing status flags
(i.e., WOS_STATUS). They are also used in window object derived classes when flags
are compared (e.g., BTF_ flags in the button class). The Event Manager also uses
FlagSet and FlagsSet with the UI_EVENT_MANAGER::Get() function to determine
the point of the queue from which the event will be retrieved.

Appendix A - Support Definitions 749

Example
#include <ui_win.hpp>

void ExampleFunction (UIF_FLAGS flags) {
if FlagsSet(flags, WOF_BORDER | WOF_NON_FIELD_REGION)
{

} }

HIWORD

Syntax
include <ui_env.hpp>

define HIWORD(arg) (((ULONG)arg » 16) & OxOOOOFFFF)

Portability
This macro is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This macro returns the high word of a 32-bit value.

Example
#include <ui_win.hpp>

void ExampleFunction(ZIL_UINT32 value) {
ZIL_UINT16 hiWord = HIWORD(value);

}

750 OpenZinc Application Framework—Programmer's Reference Volume 2

LOWORD

Syntax
include <ui_env.hpp>

define LOWORD(arg) ((ULONG)arg & OxOOOOFFFF)

Portability
This macro is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks

This macro returns the low word of a 32-bit value.

Example
#include <ui_win.hpp>
void ExampleFunction(ZIL_UINT32 value) {

ZIL_UINT16 loWord = LOWORD(value);

}

MaxValue

Syntax
include <ui_env.hpp>

#define MaxValue(«rgi, argl) (((argl) > (arg2)) ? (argl) : (arg2))

Appendix A - Support Definitions 751

Portability
This macro is available on the following environments:

• DOS Text
• Macintosh

• DOS Graphics • Windows
• OSF/Motif • Curses

• OS/2
• NEXTSTEP

Remarks
This macro returns the larger of the two values.

Example
#include <ui_dsp.hpp>
int UI_REGION_ELEMENT::Overlap(const UI_REGION &tRegion) {

return (MaxValue(tRegion.left, region.left) <=
MinValue(tRegion.right, region.right) &&
MaxValue(tRegion.top, region.top) <=
MinValue(tRegion.bottom, region.bottom));

MinValue

Syntax
include <ui_env.hpp>

#define MinValue(arg7, arg2) (((argl) < (arg2)) ? (argl) : (arg2))

Portability
This macro is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
This macro returns the smaller of the two values.

752 OpenZinc Application Framework—Programmer's Reference Volume 2

Example
#include <ui_env.hpp>

int UI_REGION_ELEMENT::Overlap(const UI_REGION ktRegion)
{

return (MaxValue(tRegion.left, region.left) <=
MinValue(tRegion.right, region.right) &&
MaxValue(tRegion.top, region.top) <=
MinValue(tRegion.bottom, region.bottom));

}

ZIL_NULLF

Syntax
include <ui_env.hpp>

#define ZIL_NULLF(type) ((type)O)

Portability
This macro is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
The ZIL_NULLF macro is used to typecast a NULL function pointer. This macro is used
when a NULL function pointer is required.

ZIL_NULLH

Syntax
include <ui_env.hpp>

#define ZIL_NULLH(type) ((type)O)

Appendix A - Support Definitions 753

Portability
This macro is available on the following environments:

• DOS Text • DOS Graphics • Windows
• Macintosh • OSF/Motif • Curses

• OS/2
• NEXTSTEP

Remarks
The ZIL_NULLH macro is used to typecast a NULL handle pointer. This macro is used
when a NULL handle pointer is required.

ZIL_NULLP

Syntax
include <ui_env.hpp>

#define ZIL_NULLP(type) ((type *)0)

Portability
This macro is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

The ZIL_NULLP macro is used to typecast a type pointer to NULL. This macro is used
when a NULL object pointer is required.

Remarks

754 OpenZinc Application Framework—Programmer's Reference Volume 2

ZIL_VOIDF

Syntax
include <ui_env.hpp>

#define ZIL_VOIDF(function) (function)
#if defined(BCPLUSPLUS) || defined(_TCPLUSPLUS_)
define ZIL_VOIDF(function) ((void *)(function))

Portability
This macro is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Remarks
The ZIL_VOIDF macro is used to typecast a function pointer according to the
requirements of the environment. The definition of ZIL_VOIDF varies depending on the
environment. This macro is typically used in UI_ITEM arrays.

ZIL_VQ1PP

Syntax
include <ui_env.hpp>

#define ZIL_VOIDP(pointer) (pointer)
#if defined(BCPLUSPLUS) || defined(_TCPLUSPLUS_)
define ZIL_VOIDP(pointer) ((void *)(pointer))

Portability
This macro is available on the following environments:

• DOS Text • DOS Graphics • Windows • OS/2
• Macintosh • OSF/Motif • Curses • NEXTSTEP

Appendix A - Support Definitions 755

Remarks
The ZIL_VOIDP macro is used to typecast a data pointer according to the requirements
of the environment. The definition of ZIL_VOIDP varies depending on the environment.

756 OpenZinc Application Framework—Programmer's Reference Volume 2

APPENDIX B - SYSTEM EVENTS

This appendix describes the system events that can be generated in OpenZinc Application
Framework. System messages are passed using the UI_EVENT structure, where the
system message is contained in EVENT_TYPE and any related information is contained in the
union portion of the UI_EVENT structure. (For additional information about system event
mapping, see the Event() member functions associated with window objects.) The
following messages (declared in UI_EVT.HPP) are recognized within OpenZinc Application
Framework:

S_ADD_OBJECT—Causes a new object to be added to the list, event.data will
point to the new object to be added.

S_ALT_KEY—Causes focus to move from the user region to the pull-down menu
or, if the pull-down menu has focus, from the pull-down menu to the current object
on the user region of the window.

S_CHANGED—Causes the object to recalculate its position and size. When a
window is moved or sized, the objects on the window will need to recalculate their
positions. This message informs an object that it has changed and that it should
update itself.

S_CHANGE_PAGE—Causes the notebook to "turn" to a new page. The page
number that should be turned to is subtracted from S_CHANGE_PAGE and passed
as the event type. The first page that was added is page zero. For example, if ten
pages were added, and the application needs to turn to page seven, an event with a
type of S_CHANGE_PAGE - 6 should be sent to the notebook. Thus, an
S_CHANGE_PAGE event by itself will turn to the first page in the notebook.

S_CREATE—Causes the object to create itself. The object will calculate its position
and size and, if necessary, will register itself with the operating system. This
message is sent by the Window Manager when a window is attached to it to cause
the window and all the objects attached to the window to determine their positions.

S_CURRENT—Causes the object to draw itself to appear current. This message is
sent by the Window Manager to a window when it becomes current. The window,
in turn, passes this message to the object on the window that is current.

S_DEINITIALIZE—Informs the object that it is about to be removed from the
application and that it should deinitialize any information. The Window Manager

Appendix B - System Events 757

sends this message to a window when the window is subtracted from the Window
Manager. The window, in turn, relays the message to all objects attached to it.

S_DISPLAY_ACTIVE—Causes the object to draw itself to appear active. An active
object is one that is on the active (i.e., current) window. Most objects do not display
differently whether they are active or inactive. An active object should not be
confused with a current object. An object is active if it is on the active window.
However, it may not be the current object on the window.

The region that needs to be redisplayed is passed in the UI_REGION portion of the
UI_EVENT structure when this message is sent. The object only needs to redisplay
when the region passed by the event overlaps the region of the object.

S_DISPLAY_INACTIVE—Causes the object to draw itself to appear inactive. An
inactive object is one that is not on the active (i.e., current) window. Most objects
do not display differently whether they are inactive or active.

The region that needs to be redisplayed is passed in the UI_REGION portion of the
UI_EVENT structure when this message is sent. The object only needs to redisplay
when the region passed with the event overlaps the region of the object.

S_DRAG_COPY_OBJECT—Indicates the user is dragging the object to copy it.

S_DRAG_MOVE_OBJECT—Indicates the user is dragging the object to move it.

S_DROP_COPY_OBJECT—Indicates the user dropped an object to copy it to this
object.

S_DROP_MOVE_OBJECT—Indicates the user dropped an object to move it to this
object.

S_HIDE_DEFAULT—Causes the object to draw as a normal button when it has
been drawing as the default button. The default button has a thick border. This
message is sent by another object when the object wishes to appear as the default.

S_HSCROLL—Causes the object to scroll horizontally, event.scrolldelta indicates
how far to scroll.

S_HSCROLL_CHECK—Causes the object to scroll the current item into view if
it is not currently visible.

758 OpenZinc Application Framework—Programmer's Reference Volume 2

S_HSCROLL_SET—Sets the scroll information for the horizontal scroll bar or
slider. The thumb button location will be updated to reflect the values, event.scroll
will contain the new scroll information.

S_INITIALIZE—Causes the object to initialize any necessary information that may
require a knowledge of its parent or siblings. When a window is added to the
Window Manager, the Window Manager sends this message to cause the window and
all the objects attached to the window to initialize themselves.

S_MAXIMIZE—Causes the window to be maximized so that it is as large as
allowed. If the window is added to the Window Manager it will be the size of the
screen. If the window is an MDI child, it will be as large as its parent's user region.
If the window is already in a maximized state, S_MAXIMIZE causes it to return to
its original size.

S_MDICHILD_EVENT + S_CLOSE—Causes the current MDI child to be closed.
The MDI parent will subtract the current MDI child and, if the MDI child does not
have the WOAF_NO_DESTROY flag set, will delete the child.

S_MDICHILD_EVENT + S_MAXIMIZE—Causes the current MDI child window
to be maximized so that it is as large as its parent's user region. If the window is
already in a maximized state, S_MDI_CHILD_EVENT + S_MAXIMIZE causes it
to return to its original size.

S_MDICHILD_EVENT + S_MINIMIZE—Causes the current MDI child window
to be minimized. If the window has a minimize icon, it will be displayed. If the
window is already in a minimized state, S_MDI_CHILD_EVENT + S_MINIMIZE
causes it to return to its original size.

S_MDICHILD_EVENT + S.RESTORE—Causes the current MDI child window
to return to its normal size if the window was in a maximized or minimized state.

S_MINIMIZE—Causes the window to be minimized. If the window has a minimize
icon, it will be displayed. If the window is already in a minimized state,
S_MINIMIZE causes it to return to its original size.

S_MOVE—Causes the object to update its location. The distance to move is
contained in the position field of UI_EVENT. For example, an event.position.line of
-10 and an event.position.column of 15 moves the object 10 lines up and 15 columns
to the right.

Appendix B - System Events 759

S_NON_CURRENT—Indicates that the object has just become non-current. This
message is received when the user moves to another field or window.

S_REDISPLAY—Causes the object to redraw.

S_REGION_DEFINE—Causes the object to reserve a region of the screen in which
it will display.

S_REGISTER_OBJECT—Causes the object to register itself with the operating
system.

S_RESET_DISPLAY—Changes the display to a different resolution, event.data
should point to the new display class to be used. If event.data is NULL, then a text
mode display will be created. This event is specific to DOS and must be placed on
the event queue by the programmer. The library will never generate this event.

S_RESTORE—Causes the window to return to its normal size if the window was
in a maximized or minimized state.

S_SCROLLRANGE—Calculates the scroll region for the window.

S_SET_DATA—Causes the record to update the data in its fields, event.rawCode
contains the record number and event.data contains the data for the record. If the
UIW_TABLE_RECORD processes this message (i.e., the table record is not a derived
table record) it will call the user function, if one exists, with a ccode of
S_SET_DATA. event is sent to the user function.

S_SHOW_DEFAULT—Causes the object to draw as the default button. The default
button has a thick border. This message is sent when another button has been current
and displaying as the default button but is no longer current.

S_SIZE—Causes the object to recalculate its position and size. When a window is
sized, the objects on the window will need to recalculate their positions. This
message informs an object that it has changed and that it should update itself.

S_SUBTRACT_OBJECT—Causes an object to be subtracted from the list.
event.data will point to the object to be subtracted.

S_VERIFY_STATUS—Causes the object to correlate its state (e.g., selected or not
selected) with the operating system.

760 OpenZinc Application Framework—Programmer's Reference Volume 2

S_VSCROLL—Causes the table to scroll vertically, event.scroll.delta indicates how
far to scroll.

S_VSCROLL_CHECK—Causes the list to scroll the current item into view if it is
not currently visible.

S_VSCROLL_SET—Sets the scroll information for the vertical scroll bar or slider.
The thumb button location will be updated to reflect the values, event.scroll will
contain the new scroll information.

Appendix B - System Events 761

OpenZinc Application Framework—Programmer's Reference Volume 2 762

APPENDIX C - LOGICAL EVENTS

This appendix describes the logical events that can be interpreted or generated in OpenZinc
Application Framework. Logical events are passed using the UI_EVENT structure, where
the logical message can either be contained directly in EVENT_TYPE or interpreted from
event.rawCode using MapEvent(). Any related information is contained in the union
portion of the UI_EVENT structure. (For additional information about logical event
mapping, see the Event() member functions associated with window objects.)

L_BACKSPACE—Causes the first editable character to the left of the cursor
position to be deleted and moves the cursor to that position. This message is
interpreted from a keyboard event.

L_BEGIN_MARK—Indicates the marking process is beginning.

L_BEGIN_SELECT—Indicates that the end-user began the selection of the object
by pressing the mouse button down while on the object.

L_BOL—Causes the cursor to be moved to the first editable character in the string.
This message is interpreted from a keyboard event.

L_BOTTOM—Scrolls the list to the last page and makes the last item in the list
current. This message is interpreted from a keyboard event.

L_CANCEL—Causes the current action to be cancelled.

L_CONTINUE_MARK—Indicates the marking process is continuing.

L_CONTINUE_SELECT—Indicates that the end-user previously clicked down on
the object with the mouse and is now continuing to hold the mouse button down
while on the object.

L_COPY_MARK—Causes the marked region to be copied into the global paste
buffer. This message is interpreted from a keyboard event.

L_CUT—Cuts the marked portion of the string. The cut region is stored in the
global paste buffer. This message is interpreted from a keyboard event.

L_DELETE—Causes the marked characters, if any, or the character at the current
cursor position to be deleted.

Appendix C - Logical Events 763

L_DELETE_EOL—Causes all editable characters from the current cursor position
to the end of the field to be deleted. This message is interpreted from a keyboard
event.

L_DELETE_WORD—Causes the word at the cursor position to be deleted, along
with any trailing spaces. This message is interpreted from a keyboard event.

L_DOUBLE_CLICK—Indicates that the end-user double-clicked on the object with
the mouse.

L_DOWN—Moves the focus down one object or decrements a value, depending on
the type of object. This message is interpreted from a keyboard event.

L_END_MARK—Indicates that the end-user has finished marking text in the string.
This message is interpreted from a mouse event.

L_END_SELECT—Indicates that the selection process, initiated with the L_-
BEGIN_SELECT message, is complete. For example, the end-user has pressed and
released the mouse button.

L_EOL—Causes the cursor to be moved to the last editable character in the string.
This message is interpreted from a keyboard event.

L_FIRST—Causes the first object in the list to be made current.

L_HELP—Causes the help system to be displayed. The window passes this message
to the current object to let it display its help. If the current object does not process
the message, the window's help context will be displayed.

L_INSERT_TOGGLE—Toggles the insert mode. This message is interpreted from
a keyboard event.

L_LAST—Causes the last object in the list to be made current.

L_LEFT—Moves the focus left or decrements a value, depending on the type of
object. This message is interpreted from a keyboard event.

L_MARK—Turns the mark feature on or off. This message is interpreted from a
keyboard event.

L_MARK_BOL—Marks the text from the current cursor position to the beginning
of the current line and places the cursor at the beginning of the line. This message
is interpreted from a keyboard event.

764 OpenZinc Application Framework—Programmer's Reference Volume 2

L_MARK_DOWN—Causes the cursor to move down one line in the text buffer.
Where possible, the cursor position stays at the same horizontal character offset. The
text between the starting cursor position and the ending cursor position will be
marked. This message is interpreted from a keyboard event.

L_MARK_EOL—Marks the text from the current cursor position to the end of the
current line and places the cursor at the end of the line. This message is interpreted
from a keyboard event.

L_MARK_LEFT—Moves the cursor to the left one character, marking the character.
This message is interpreted from a keyboard event.

L_MARK_PGDN—Causes the text field to scroll down one page. The text between
the starting cursor position and the ending cursor position will be marked. This
message is interpreted from a keyboard event.

L_MARK_PGUP—Causes the text field to scroll up one page. The text between
the starting cursor position and the ending cursor position will be marked. This
message is interpreted from a keyboard event.

L_MARK_RIGHT—Moves the cursor to the right one character, marking the
character. This message is interpreted from a keyboard event.

L_MARK_UP—Causes the cursor to move up one line in the text buffer. Where
possible, the cursor position stays at the same horizontal character offset. The text
between the starting cursor position and the ending cursor position will be marked.
This message is interpreted from a keyboard event.

L_MARK_WORD_LEFT—Causes the cursor position to be moved to the beginning
of the current word or, if the cursor is at the beginning of the current word, to the
beginning of the next word to the left of the current cursor position. The text
between the starting cursor position and the ending cursor position will be marked.
This message is interpreted from a keyboard event.

L_MARK_WORD_RIGHT—Causes the cursor to move to the beginning of the next
word to the right of the current cursor position. The text between the starting cursor
position and the ending cursor position will be marked. This message is interpreted
from a keyboard event.

L_MAXIMIZE—Causes the window to be maximized so that it is as large as
allowed. If the window is added to the Window Manager it will be the size of the
screen. If the window is an MDI child, it will be as large as its parent's user region.

Appendix C - Logical Events 765

If the window is already in a maximized state, L_MAXIMIZE causes it to return to
its original size.

L_MDICHILD_EVENT + L_MOVE—Causes the current MDI child window to go
into "move mode." If, for example, the end-user selects the "Move" option from
the system menu, the window can then be moved using the arrow keys.

L_MDICHILD_EVENT + L_NEXT_WINDOW—Makes the next MDI child the
current MDI child.

L_MDICHILD_EVENT + L_SIZE—Causes the current MDI child window to go
into "size mode." If, for example, the end-user selects the "Size" option from the
system menu, the window can then be sized using the arrow keys.

L_MINIMIZE—Causes the window to be minimized. If the window has a minimize
icon, it will be displayed. If the window is already in a minimized state,
L_MINIMIZE causes it to return to its original size.

L_MOVE—Causes the window to go into "move mode." If, for example, the end-
user selects the "Move" option from the system menu, the window can then be
moved using the arrow keys.

L_NEXT—Causes the next selectable object in the list of window objects to become
current. If the last field on the window is current, the first object will become current
unless the WNF_NO_WRAP flag is set. This message is interpreted from a keyboard
event.

L_PASTE—Causes the contents of the paste buffer to be placed in the field at the
current cursor position.

L_PGDN—Causes the list to scroll down a page. This message is interpreted from
a keyboard event.

L_PGUP—Causes the list to scroll up a page. This message is interpreted from a
keyboard event.

L_PREVIOUS—Causes the previous selectable object in the list of window objects
to become current. If the first field on the window is current, the last object will
become current unless the WNF_NO_WRAP flag is set. This message is interpreted
from a keyboard event.

L_RESTORE—Causes the window to return to its normal size if the window was
in a maximized or minimized state.

766 OpenZinc Application Framework—Programmer's Reference Volume 2

L_RIGHT—Moves the focus right or increments a value, depending on the type of
object. This message is interpreted from a keyboard event.

L_SELECT—Indicates that the object has been selected. The selection may be the
result of a mouse click or a keyboard action.

L_SIZE—Causes the window to go into "size mode." If, for example, the end-user
selects the "Size" option from the system menu, the window can then be sized using
the arrow keys.

L_TOP—Scrolls the list to the first page and makes the first item in the list current.
This message is interpreted from a keyboard event.

L_UP—Moves the focus up one object or increments a value, depending on the type
of object. This message is interpreted from a keyboard event.

L_VIEW—Indicates that the mouse is being moved over the object. This message
allows the object to alter the mouse image.

L_WORD_LEFT—Causes the cursor position to be moved to the beginning of the
current word or, if the cursor is at the beginning of the current word, to the beginning
of the next word to the left of the current cursor position. This message is interpreted
from a keyboard event.

L_WORD_RIGHT—Causes the cursor to move to the beginning of the next word
to the right of the current cursor position.

Appendix C - Logical Events 767

OpenZinc Application Framework—Programmer's Reference Volume 2 768

APPENDIX D - CLASS IDENTIFIERS

This appendix contains a list of fixed constant values that are used as class identifiers.
The definition of these constants is contained in UI_GEN.HPP.

General

The following identifications are general to OpenZinc Application Framework:

ID_DISPLAY—Identification for the UI_DISPLAY class.

ID_EVENT_MANAGER—Identification for the UI_EVENT_MANAGER class.

ID_WINDOW_MANAGER—Identification for the UI_WINDOW_MANAGER
class.

ID_END—Identification that indicates the end of an array (used by MapEvent() and
MapPalette()).

ID_SCREEN—Identification for the screen background.

ID_DIRECT—Identification for the screen directly, including any objects on the
screen.

Window Objects
The following identifications apply to window objects:

ID_ATTACHMENT UI_ATTACHMENT class

ID_BIGNUM UIW_BIGNUM class

ID_BORDER UIW_BORDER class

ID_BUTTON UIW_BUTTON class

ID_CHECK_BOX check box

ID_COMBO_BOX UIW_COMBO_BOX class

Appendix D - class Identifiers 769

ID_CONSTRAINT

ID DATE

UI_CONSTRAINT class

UIW_DATE class

ID DIMENSION CONSTRAINT UI_DIMENSION_CONSTRAINT class

ID_FORMATTED_STRING

ID_GEOMETRY_MANAGER

ID_GROUP

ID_HZ_LIST

ID_ICON

ID_INTEGER

ID_LIST

ID_LIST_ITEM

ID_MAXIMIZE_BUTTON

ID_MENU

ID_MENU_ITEM

ID_MINIMIZE_BUTTON

ID_NOTEBOOK

ID_NUMBER

ID_POP_UP_MENU

ID_POP_UP_ITEM

ID_PROMPT

ID_PULL_DOWN_MENU

ID PULL DOWN ITEM

UIW_FORMATTED_STRING class

UI_GEOMETRY_MANAGER class

UIW_GROUP class

UIW_HZ_LIST class

UIW_ICON class

UIW_INTEGER class

Any list type

Any object in a list

UIW_MAXIMIZE_BUTTON class

Used to tie the menu classes

Used to tie the menu item classes

UIW_MINIMIZE_BUTTON class

UIW_NOTEBOOK class

Used to tie the number classes

UIW_POP_UP_MENU class

UIW_POP_UP_ITEM class

UIW_PROMPT class

UIW_PULL_DOWN_MENU class

UIW PULL DOWN ITEM class

791 OpenZinc Application Framework—Programmer's Reference Volume 2

ID_RADIO_BUTTON

ID_REAL

ID_RELATIVE_CONSTRAINT

ID_SCROLL_BAR

ID_SPIN_CONTROL

ID_STATUS_BAR

ID_STATUS_ITEM

ID_STRING

ID_SYSTEM_BUTTON

ID_TABLE

ID_TABLE_HEADER

ID_TABLE_RECORD

ID_TEXT

ID_TIME

ID_TITLE

ID_TOOL_BAR

ID_VT_LIST

ID_WINDOW

ID_WINDOW_OBJECT

radio button

UIW_REAL class

UI_RELATIVE_CONSTRAINT class

UIW_SCROLL_BAR class

UIW_SPIN_CONTROL class

UIW_STATUS_BAR class

An object on a status bar

UIW_STRING class

UIW_SYSTEM_BUTTON class

UIW_TABLE class

UIW_TABLE_HEADER class

UIW_TABLE_RECORD class

UIW_TEXT class

UIW_TIME class

UIW_TITLE class

UIW_TOOL_BAR class

UIW_VT_LIST class

UIW_WINDOW class

UI_WINDOW_OBJECT class

Appendix D - class Identifiers 771

Shadowing
The following identifications are used to determine the color of a shaded object (e.g.,
border, button):

ID_OUTLINE

ID_WHITE_SHADOW

ID_LIGHT_SHADOW

ID_DARK_SHADOW

ID_BLACK_SHADOW

Outline of the object

Top-left shadow (normal)

Bottom-right shadow (normal)

Top-left shadow (depressed)

Bottom-right shadow (depressed)

772 OpenZinc Application Framework—Programmer's Reference Volume 2

APPENDIX E - OpenZinc OBJECT STORAGE

This appendix describes the file layout for <file>.DAT files. These files are created by
the Interactive Design Tool whenever the *file, Save" or *file, save As" option is
selected.

File Information
Each .DAT file contains all objects created and saved by OpenZinc Designer. Each file is
organized in the following manner:

OpenZinc Signature
Revision Number
UIW_WINDOW directory

- contains definitions for UIW_WINDOW as well as the window's sub-objects.
UI_BITMAP directory

- contains bitmap data (i.e., name, height, width, bitmap array).
UI_ICON directory

- contains icon data (i.e., name, text, icon array).
UI_HELP directory

- contains help contexts (i.e., help context, title, message).
UI_HPP directory

- contains information used to create the .HPP file.
UI_CPP directory

- contains entries to connect window objects with their corresponding
userFunction (specified in OpenZinc Designer).

ZIL_INTERNATIONAL directory
- contains locale and language translations. Not all .DAT files will have this
directory.

OpenZinc signature is stored by the OpenZinc_SIGNATURE structure (defined in STORE.CPP):

struct OpenZinc_SIGNATURE {
char copyrightNotice[64];
ZIL_UINT8 majorVersion;
ZIL_UINT8 minorVersion;
ZIL_UINT16 magicNumber;

} ;

Appendix E - OpenZinc Object Storage 773

UI_ATTACHMENT
The UI_ATTACHMENT class stores the following member variables after calling
UI_CONSTRAINT::Store():

reference->numberID, if the attachment is tied to an object.
refObjectID
atcFlags
offset

UI_CONSTRAINT
The UI_CONSTRAINT class stores the following member variable:

object->numberID, if the constraint is tied to an object.

UI_DIMENSION_CONSTRAINT
The UI_DIMENSION_CONSTRAINT class stores the following member variables after
calling UI_CONSTRAINT::Store():

dncFlags
maximum
minimum

UI_GEOMETRY_MANAGER
The UI_GEOMETRY_MANAGER class stores the following member variables after
calling UI_WINDOW_OBJECT::Store():

The number of constraints attached to the geometry manager.
The searchID of the constraint.
The constraint.

UI_RELATIVE_CONSTRAINT
The UI_RELATIVE_CONSTRAINT class stores the following member variables after
calling ULCONSTRAINT::Store():

rlcFlags

774 OpenZinc Application Framework—Programmer's Reference Volume 2

numerator
denominator
offset

UI_WINDOW_OBJECT
The UI_WINDOW_OBJECT class stores the following member variables:

numberlD
stringlD
woFlags
woAdvancedFlags
left
top
right
bottom
helpContext
userFlags
userStatus
userObjectName
userFunctionName

UIW_BIGNUM

The bignum class stores the following member variables, after calling UIW_STRING::-
Store():

nmFlags
range

NOTE: The bignum value is saved by storing the string representation of the bignum
when UIW_STRING::Store() is called.

UIW_BORDER
The border is stored as an attribute of UIW_WINDOW.

Appendix E - OpenZinc Object Storage 775

UIW_BUTTON
The UIW_BUTTON class stores the following member variables, after calling UI_-
WINDOW_OBJECT::Store():

btFlags
value
depth
text
bitmapName

NOTE: If a bitmap is associated with the button, it is stored in the UI_BITMAP
directory.

UIW_COMBO_BOX
The UIW_COMBO_BOX class does not store any member variables. It calls UI_-
WINDOW_OBJECT::Store() then stores its associated list by calling the list's Store()
function.

UIW_DATE
The UIW_DATE class stores the following member variables, after calling UIW_-
STRING::Store():

dtFlags
range

NOTE: The date value is saved by storing the string representation of the date when
UIW_STRING::Store() is called.

UIW_FORMATTED_STRING
The UIW_FORMATTED_STRING class stores the following member variables, after
calling UIW_STRING::Store():

compressedText
editMask
deleteText

776 OpenZinc Application Framework—Programmer's Reference Volume 2

UIW_GROUP
The UIW_GROUP class stores the following member variable, after calling UIW_-
WINDOW::Store():

text

UIW_HZ_LIST
The UIW_HZ_LIST class stores the following member variables, after calling UIW_-
WINDOW::Store():

cellWidth
cellHeight

UIW_ICON

The UIW_ICON class stores the following member variables, after calling UI_-
WINDOW_OBJECT::Store():

icFlags
title
iconName
iconWidth
iconHeight
iconArray

NOTE: If a bitmap is associated with the button, it is stored in the UI_BITMAP
directory.

UIW_INTEGER

The UIW_INTEGER class stores the following member variables, after calling UIW_-
STRING::Store():

nmFlags
range

NOTE: The integer value is saved by storing the string representation of the integer when
UIW_STRING::Store() is called.

Appendix E - OpenZinc Object Storage 798

UIW_MAXIMIZE_BUTTON

The UIW_MAXIMIZE_BUTTON class only stores its searchID, which is ID_-
MAXIMIZE_BUTTON.

UIW_MINIMIZE_BUTTON
The UIW_MINIMIZE_BUTTON class only stores its searchID, which is ID_-
MINIMIZE_BUTTON.

UIW_POP_UP_ITEM
The UIW_POP_UP_ITEM class stores the following member variable, after calling
UIW_BUTTON::Store():

mniFlags

NOTE: The pop-up item also stores its associated menu (if any) by calling the menu's
Store() function.

UIW_POP_UP_MENU
The UIW_POP_UP_MENU class does not store any member variables, it only calls
UIW_WINDOW::Store().

UIW_PROMPT
The UIW_PROMPT class stores the following member variable, after calling UI_-
WINDOW_OBJECT::Store():

text

UIW_PULL_DOWN_ITEM
The UIW_PULL_DOWN_ITEM class does not store any member variables. It calls
UIW_BUTTON::Store() then stores its associated menu (if any) by calling the menu's
Store() function.

778 OpenZinc Application Framework—Programmer's Reference Volume 2

UIW_PULL_DOWN_MENU
The UIW_POP_UP_MENU class does not store any member variables, it only calls
UIW_WINDOW::Store().

UIW_REAL
The UIW_REAL class stores the following member variables, after calling UIW_-
STRING::Store():

nmFlags
range

NOTE: The real value is saved by storing the string representation of the real when
UIW_STRING::Store() is called.

UIW_SCROLL_BAR
The UIW_SCROLL_BAR class stores the following member variables, after calling UI_-
WINDOW_OBJECT::Store():

sbFlags
minimum
maximum
current

UIW_SPIN_CONTROL
The UIW_SPIN_CONTROL class stores the following member variables, after calling
UI_WINDOW_OBJECT::Store():

The searchID of the object being controlled.
fieldObject (the object being controlled)
wnFlags
delta

Appendix E - OpenZinc Object Storage 779

UIW_STATUS_BAR
The UIW_STATUS_BAR class stores the following member variable, after calling UIW_-
WINDOW::Store():

height

UIW_STRING
The UIW_STRING class stores the following member variables, after calling UI_-
WINDOW_OBJECT::Store():

stFlags
maxLength
text

UIW_SYSTE M_BUTTO N

The UIW_SYSTEM_BUTTON class stores the following member variable:

syFlags.

If the system button is not a generic system button its menu is also stored.

UIW_TABLE
The UIW_TABLE class stores the following member variable, after calling UIW_-
WINDOW::Store():

tblFlags

UIW_TABLE_HEADER
The UIW_TABLE_HEADER class stores the following member variable, after calling
UIW_TABLE::Store():

thFlags

780 OpenZinc Application Framework—Programmer's Reference Volume 2

UIW_TABLE_RECORD
The UIW_TABLE_RECORD class does not store any member variables, it only calls
UIW_WINDOW::Store().

UIW_TEXT
The UIW_TEXT class stores the following member variables, after calling UI_-
WINDOW_OBJECT::Store():

maxLength
text
noOfObjects
_value (This value is stored for each of the text object's support objects.)
object (This is a support object.)
wnFlags

UIW_TIME
The UIW_TIME class stores the following member variables, after calling UIW_-
STRING::Store():

tmFlags
range

NOTE: The time value is saved by storing the string representation of the time when
UIW_STRING::Store() is called.

UIW_TITLE

The UIW_TITLE class stores the following member variable:

text

UIW_TOOL_BAR
The UIW_TOOL_BAR class does not store any member variables, it only calls UIW_-
WINDOW::Store().

Appendix E - OpenZinc Object Storage 781

UIW_VT_LIST
The UIW_VT_LIST class does not store any member variables, it only calls UIW_-
WINDOW::Store().

UIW_WINDOW
The UIW_WINDOW class:

1—Checks for a valid directory (i.e., in the file) and disk file. If the file does not
exist (i.e., a new file), the file is created and the following variables are stored:

miniNumeratorX
miniDenominatorX
miniNumeratorY
miniDenominatorY

2—The window and each of the sub-objects are stored. First UI_-
WINDOW_OBJECT::Store() is called to store the window and then the following
member variables are stored:

noOfObjects (i.e., number of objects attached to the window)

Support Objects (The object->searchID is stored for each object and then
the object->Store() is called. This is done for all of the
window's support objects.)

Regular Objects (The object->searchID is stored for each object and then
the object->Store() is called. This is done for all of the
window's objects that are not in the support list.)

wnFlags
compareFunctionName

3—Write out the header information. Header information (used to re-construct the
object) is stored for each object in the window.

4—User and compare function names are stored together with a logical link to the
objects to which they are attached.

782 OpenZinc Application Framework—Programmer's Reference Volume 2

ZAF_DIALOG_WINDOW
The ZAF_DIALOG_WINDOW class does not store any member variables, it only calls
UIW_WINDOW::Store().

Appendix E - OpenZinc Object Storage 783

OpenZinc Application Framework—Programmer's Reference Volume 2 784

OpenZinc Application Framework—Programmer's Reference Volume 2 788

APPENDIX G - ISO COUNTRY CODES

This appendix lists the ISO country codes. OpenZinc will maintain compatibility with the ISO
definitions as they are updated or, in certain cases, before they are officially adopted if
it is evident that a proposed standard will be adopted. Please be aware that the inclusion
of a country code in this table does not imply support for that country code by OpenZinc
Application Framework. This table is the complete ISO table.

Country/Locale Codes

These codes are used by OpenZinc for identifying a particular country, or, if necessary, a locale
within a country. The locale identified by these codes will affect the formatting of dates
and times, and the display of symbols (e.g., monetary symbols). The codes are from the
IS03166 standard.

Country Code

AFGHANISTAN AF

ALBANIA AL

ALGERIA DZ

AMERICAN SAMOA AS

ANDORRA AD

ANGOLA AO

ANGUILLA AI

ANTARCTICA AQ

ANTIGUA AND BARBUDA AG

ARGENTINA AR

ARMENIA AM

ARUBA AW

AUSTRALIA AU

AUSTRIA AT

AZERBAIJAN AZ

BAHAMAS BS

BAHRAIN BH

BANGLADESH BD

Appendix G - ISO Country Codes 789

Country Code

BARBADOS BB

BELARUS BY

BELGIUM BE

BELIZE BZ

BENIN BJ

BERMUDA BM

BHUTAN BT

BOLIVIA BO

BOSNIA AND HERZEGOWINA BA

BOTSWANA BW

BOUVET ISLAND BV

BRAZIL BR

BRITISH INDIAN OCEAN TERRITORY IO

BRUNEI DARUSSALAM BN

BULGARIA BG

BURKINA FASO BF

BURUNDI BI

BYELORUSSIAN SSR BY

CAMBODIA KH

CAMEROON CM

CANADA CA

CAPE VERDE CV

CAYMAN ISLANDS KY

CENTRAL AFRICAN REPUBLIC CF

CHAD TD

CHILE CL

CHINA CN

CHRISTMAS ISLAND CX

COCOS (KEELING) ISLANDS CC

COLOMBIA CO

COMOROS KM

CONGO CG

COOK ISLANDS CK

COSTA RICA CR

790 OpenZinc Application Framework—Programmer's Reference Volume 2

Country Code

COTE D'lVOIRE CI

CROATIA (local name: Hrvatska) HR

CUBA CU

CYPRUS CY

CZECH REPUBLIC c z

DENMARK DK

DJIBOUTI DJ

DOMINICA DM

DOMINICAN REPUBLIC DO

EAST TIMOR TP

ECUADOR EC

EGYPT EG

EL SALVADOR SV

EQUATORIAL GUINEA GQ

ESTONIA EE

ETHIOPIA ET

FALKLAND ISLANDS (MALVINAS) FK

FAROE ISLANDS FO

FIJI FJ

FINLAND FI

FRANCE FR

FRANCE, METROPOLITAN FX

FRENCH GUIANA GF

FRENCH POLYNESIA PF

FRENCH SOUTHERN TERRITORIES TF

GABON GA

GAMBIA GM

GEORGIA GE

GERMANY DE

GHANA GH

GIBRALTAR GI

GREECE GR

GREENLAND GL

GRENADA GD

Appendix G - ISO Country Codes 791

Country Code

GUADELOUPE GP

GUAM GU

GUATEMALA GT

GUINEA GN

GUINEA-BISSAU GW

GUYANA GY

HAITI HT

HEARD AND MC DONALD ISLANDS HM

HONDURAS HN

HONG KONG HK

HUNGARY HU

ICELAND IS

INDIA IN

INDONESIA ID

IRAN (ISLAMIC REPUBLIC OF) IR

IRAQ IQ

IRELAND IE

ISRAEL IL

ITALY IT

JAMAICA JM

JAPAN JP

JORDAN JO

KAZAKHSTAN KZ

KENYA KE

KIRIBATI KI

KOREA, DEMOCRATIC PEOPLE'S REPUBLIC OF KP

KOREA, REPUBLIC OF KR

KUWAIT KW

KYRGYZSTAN KG

LAO PEOPLE'S DEMOCRATIC REPUBLIC LA

LATVIA LV

LEBANON LB

LESOTHO LS

LIBERIA LR

792 OpenZinc Application Framework—Programmer's Reference Volume 2

Country Code

LIBYAN ARAB JAMAHIRIYA LY

LIECHTENSTEIN LI

LITHUANIA LT

LUXEMBOURG LU

MACAU MO

MACEDONIA, THE FORMER YUGOSLAV REPUBLIC OF MK

MADAGASCAR MG

MALAWI MW

MALAYSIA MY

MALDIVES MV

MALI ML

MALTA MT

MARSHALL ISLANDS MH

MARTINIQUE MQ

MAURITANIA MR

MAURITIUS MU

MAYOTTE YT

MEXICO MX

MICRONESIA FM

MOLDOVA, REPUBLIC OF MD

MONACO MC

MONGOLIA MN

MONTSERRAT MS

MOROCCO MA

MOZAMBIQUE MZ

MYANMAR MM

NAMIBIA NA

NAURU NR

NEPAL NP

NETHERLANDS NL

NETHERLANDS ANTILLES AN

NEW CALEDONIA NC

NEW ZEALAND NZ

NICARAGUA NI

Appendix G - ISO Country Codes 793

Country Code

NIGER NE

NIGERIA NG

NIUE NU

NORFOLK ISLAND NF

NORTHERN MARIANA ISLANDS MP

NORWAY NO

OMAN OM

PAKISTAN PK

PALAU PW

PANAMA PA

PAPUA NEW GUINEA PG

PARAGUAY PY

PERU PE

PHILIPPINES PH

PITCAIRN PN

POLAND PL

PORTUGAL PT

PUERTO RICO PR

QATAR QA

REUNION RE

ROMANIA RO

RUSSIAN FEDERATION RU

RWANDA RW

SAINT KITTS AND NEVIS KN

SAINT LUCIA LC

SAINT VINCENT AND THE GRENADINES VC

SAMOA WS

SAN MARINO SM

SAO TOME AND PRINCIPE ST

SAUDI ARABIA SA

SENEGAL SN

SEYCHELLES SC

SIERRA LEONE SL

SINGAPORE SG

794 OpenZinc Application Framework—Programmer's Reference Volume 2

Country Code

SLOVAKIA (Slovak Republic) SK

SLOVENIA SI

SOLOMON ISLANDS SB

SOMALIA so
SOUTH AFRICA ZA

SPAIN ES

SRI LANKA LK

ST. HELENA SH

ST. PIERRE AND MIQUELON PM

SUDAN SD

SURINAME SR

SVALBARD AND JAN MAYEN ISLANDS SJ

SWAZILAND SZ

SWEDEN SE

SWITZERLAND CH

SYRIAN ARAB REPUBLIC SY

TAIWAN, PROVINCE OF CHINA TW

TAJIKISTAN TJ

TANZANIA, UNITED REPUBLIC OF TZ

THAILAND TH

TOGO TG

TOKELAU TK

TONGA TO

TRINIDAD AND TOBAGO TT

TUNISIA TN

TURKEY TR

TURKMENISTAN TM

TURKS AND CAICOS ISLANDS TC

TUVALU TV

UGANDA UG

UKRAINIAN UA

UNITED ARAB EMIRATES AE

UNITED KINGDOM GB

UNITED STATES US

Appendix G - ISO Country Codes 795

Country Code

UNITED STATES MINOR OUTLYING ISLANDS UM

URUGUAY UY

UZBEKISTAN UZ

VANUATU VU

VATICAN CITY STATE (HOLY SEE) VA

VENEZUELA VE

VIET NAM VN

VIRGIN ISLANDS (BRITISH) VG

VIRGIN ISLANDS (U.S.) VI

WALLIS AND FUTUNA ISLANDS WF

WESTERN SAHARA EH

YEMEN YE

YUGOSLAVIA YU

ZAIRE ZR

ZAMBIA ZM

ZIMBABWE ZW

It should be noted that each locale also has a three-letter code and a numerical code
defined by IS03166, but as OpenZinc Application Framework uses only the two-letter code we
only present those here.

796 OpenZinc Application Framework—Programmer's Reference Volume 2

APPENDIX H - ISO LANGUAGE CODES

This appendix lists the ISO language codes. OpenZinc will maintain compatibility with the
ISO definitions as they are updated or, in certain cases, before they are officially adopted
if it is evident that a proposed standard will be adopted. Please be aware that the
inclusion of a language code in this table does not imply support for that language code
by OpenZinc Application Framework. This table is the complete ISO table.

Language Codes

These codes are used by OpenZinc for identifying a particular language. The language
identified by these codes will be used when displaying text on objects in the library. The
codes are from the IS0639 standard.

Language Code

(AFAN) OROMO om

ABKHAZIAN ab

AFAR aa

AFRIKAANS af

ALBANIAN sq

AMHARIC am

ARABIC ar

ARMENIAN hy

ASSAMESE as

AYMARA ay

AZERBAIJANI az

BASHKIR ba

BASQUE eu

BENGALI; BANGLA bn

BHUTANI dz

BIHARI bh

BISLAMA bi

BRETON br

BULGARIAN bg

Appendix H - ISO Language Codes 797

Language Code

BURMESE my

BYELORUSSIAN be

CAMBODIAN km

CATALAN ca

CHINESE zh

CORSICAN CO

CROATIAN hr

CZECH cs

DANISH da

DUTCH nl

ENGLISH en

ESPERANTO eo

ESTONIAN et

FAEROESE fo

FIJI fj

FINNISH fi
FRENCH fr

FRISIAN fy
GALICIAN gl

GEORGIAN ka

GERMAN de

GREEK el

GREENLANDIC kl

GUARANI gn

GUJARATI gu

HAUSA ha

HEBREW iw

HINDI hi

HUNGARIAN hu

ICELANDIC is

INDONESIAN in

INTERLINGUA ia

INTERLINGUE ie

INUPIAK ik

798 OpenZinc Application Framework—Programmer's Reference Volume 2

Language Code

IRISH ga

ITALIAN it

JAPANESE ja

JAVANESE jw

KANNADA kn

KASHMIRI ks

KAZAKH kk

KINYARWANDA rw

KIRGHIZ ky

KIRUNDI rn

KOREAN ko

KURDISH ku

LAOTHIAN lo

LATIN la

LATVIAN, LETTISH lv

LINGALA In

LITHUANIAN It

MACEDONIAN mk

MALAGASY mg

MALAY ms

MALAYALAM ml

MALTESE mt

MAORI mi

MARATHI mr

MOLDAVIAN mo

MONGOLIAN mn

NAURU na

NEPALI ne

NORWEGIAN no

OCCITAN oc

OR1YA or

PASHTO, PUSHTO ps

PERSIAN fa

POLISH pl

Appendix H - ISO Language Codes 799

Language Code

PORTUGUESE pt

PUNJABI pa

QUECHUA qu

RHAETO-ROMANCE rm

ROMANIAN ro

RUSSIAN ru

SAMOAN sm

SANGRO sg

SANSKRIT sa

SCOTS GAELIC gd

SERBIAN sr

SERBO-CROATIAN sh

SESOTHO St

SETSWANA tn

SHONA sn

SINDHI sd

SINGHALESE si

SISWATI ss

SLOVAK sk

SLOVENIAN si

SOMALI so

SPANISH es

SUNDANESE su

SWAHILI sw

SWEDISH sv

TAGALOG tl

TAJIK tg

TAMIL ta

TATAR tt

TEGULU te

THAI th

TIBETAN bo

TIGRINYA ti

TONGA to

800 OpenZinc Application Framework—Programmer's Reference Volume 2

Language Code

TSONGA ts

TURKISH tr

TURKMEN tk

TWI tw

UKRAINIAN uk

URDU ur

UZBEK uz

VIETNAMESE vi

VOLAPUK vo

WELSH cy

WOLOF wo

XHOSA xh

YIDDISH ji

YORUBA yo

ZULU zu

Appendix H - ISO Language Codes 801

OpenZinc Application Framework—Programmer's Reference Volume 2 802

APPENDIX | - HARDWARE ISSUES

OpenZinc Application Framework provides low-level support for the following hardware
configurations:

IBM AT and DOS/V
NEC PC 9800

Each of these systems operates differently at the hardware level. Because OpenZinc provides
low-level hardware support for each environment, your applications will be readily
portable.

NOTE: Because Japanese hardware is not IBM AT compatible, you should not make any
BIOS calls. It will almost certainly not do what was intended.

Binding Device Drivers
The makefiles and library are configured, by default, to build libraries compatible with
IBM AT-type hardware, including DOS/V. If support for the NEC PC 9800 is desired,
or if an executable that may be used on either configuration (i.e., if run-time device driver
binding is required) is needed, then you will need to rebuild the library for these purposes.

To build the library for the NEC PC 9800 hardware configuration only, you will need to
define the ZIL_HARDWARE macro in the UI_ENV.HPP source module. You will also
need to modify the makefile in the \OpenZinc\SOURCE directory. At the top of the makefile
there are definitions for DOSHARDWAREDEP and DOSHARDWARELIB. For
example, for the Microsoft compiler these are defined to be i_mscat.obj and
+i_mscat.obj, respectively, or for the Borland compiler they are defined to be i_btcat.obj
and +i_btcat.obj. If support for other compilers is implemented, they will use a similar
naming convention. Change these to i_mscnec.obj and +i_mscnec.obj or i_btcnec.obj
and +i_btcnec.obj as appropriate for the compiler you are using. Then use this makefile
to build the libraries. Any application built using this library will be ready to run on an
NEC PC 9800 hardware configuration.

To build the library so that it can bind the appropriate drivers at run-time for either the
IBM-AT, including DOS/V, or the NEC PC 9800, the procedure is very similar to that
described above. First define ZIL_HARDWARE in UI_ENV.HPP. But then, instead
of changing the definitions for DOSHARDWAREDEP and DOSHARDWARELIB, add
i_mscnec.obj or ijbtcnec.obj so that both the "AT" and "NEC" modules are present.
Then rebuild the libraries. Any applications built using this library can be run on either

Appendix I - Hardware Issues 803

the IBM-AT or NEC PC 9800 hardware configurations. OpenZinc Application Framework will
bind the appropriate drivers at run-time.

Macros

The following macros are used to initialize hardware support function names in the
library. Their descriptions are provided for anyone needing to port the library to an
unsupported environment. The programmer typically will never need to use these macros.

I_MAKENAME—Constructs a hardware-specific function name from a generic
function name. The generic function name is passed to the macro as a parameter.
In addition to the function name passed in, another macro, ZIL_MODULE, is used
when constructing the hardware-specific name. ZIL_MODULE contains a value that
identifies the hardware being used (see description of ZIL_MODULE below).

The hardware-specific function name is constructed by prepending the value of
ZIL_MODULE on the generic function name. For example, if ZIL_MODULE is
defined to be "NEC" (specifying an NEC 9800 hardware configuration), and the
base function name is I_ScreenOpen, the resulting function name will be "NEC"
+ I_ScreenOpen, or NECI_ScreenOpen. This function is defined in the appropriate
I_*.CPP file. For example, if the Borland compiler and NEC hardware are being
used, the function would appear in the I_BTCNEC.CPP source code module.

The programmer should never need to use this macro. It is used by the library only.

MAKE_SETFUNCTIONS—Creates a function which will be used to convert all
generic device driver function names to hardware-specific names. The name of the
function is created by calling I_MAKENAME (see description above for details),
passing it I_SetFunctions (the generic function name). Thus, if an NEC hardware
configuration is being used, the function name generated will be
NECI_SetFunctions.

The function defined by MAKE_SETFUNCTIONS simply calls I_MAKENAME
for each generic driver function. The function is called at program initialization from
within UI_DISPLAY::I18NInitialize() once the hardware configuration is
determined.

The programmer should never need to use this macro. It is used by the library only.

ZIL_HARDWARE—Indicates whether generic function names need to be converted
to hardware-specific function names. If ZIL_HARDWARE is defined, conversion

804 OpenZinc Application Framework—Programmer's Reference Volume 2

will take place. If it is not defined, no conversion will occur. The library assumes
IBM-AT hardware as the default configuration, so conversion is necessary only for
non-AT hardware.

This macro must be defined in UI_ENV.HPP if building the library for non-AT
hardware configurations.

ZIL_MODULE—Defines the hardware type in use. For example, if an NEC
configuration is being used, ZIL_MODULE will be "NEC." This macro is used
by the I_MAKENAME macro when constructing a hardware-specific function name
from the generic function name (see example in I_MAKENAME macro description).

Unless creating device drivers for a new hardware environment, this macro should
not be used by the programmer.

Generic Keyboard Functions

This section describes functions used for low-level interaction with the keyboard. These
functions should not be used directly by the programmer, but descriptions are provided
in the event that the programmer needs to implement a similar device, has need of
implementing such a device on a new hardware configuration, or just wants to gain a
better understanding of the operation of OpenZinc Application Framework.

I_KeyboardClose

Syntax
void I_KeyboardClose(void);

Remarks
This function restores the ISR that was in use prior to the initialization of the keyboard
device and that was saved by I_KeyboardOpen. This function is called by the
UID_KEYBOARD destructor.

Appendix I - Hardware Issues 805

I_KeyboardOpen

Syntax
void I_KeyboardOpen(void);

Remarks
This function initializes the keyboard device for input. It checks which type of keyboard
is in use (e.g., enhanced keyboard or not) and saves the type for use by other functions.
It also saves the <CTRL-C> and <CTRL-BREAK> interrupt service routine (ISR)
currently in use and replaces it with an ISR from OpenZinc Application Framework's library.
This function is called by the UID_KEYBOARD constructor.

I_KeyboardQuery

Syntax

void I_KeyboardQuery(unsigned *shiftState);

Remarks
This function checks to see if there is a character in the keyboard buffer. If there is no
keypress waiting, the current keyboard shift-state is returned.
• returnValueout indicates the state of the keyboard. If a keypress is waiting to be

processed, returnValue is TRUE. If there are no keypresses waiting, it is FALSE.

• shiftStateout is set to the IBM-defined shift state value (e.g., <CTRL> keypress is
0x0004). OpenZinc provides definitions for these values in the UI_EVT.HPP source
module. For example, S_CTRL = 0x0004.

l_Keyboard Read

Syntax

void I_KeyboardRead(unsigned *rawCode, unsigned *shiftState, unsigned *value);

806 OpenZinc Application Framework—Programmer's Reference Volume 2

Remarks
This function reads a character from the keyboard. If a character is not available, the
function waits until a key is pressed. It is called by the UID_KEYBOARD::Poll()
function.

• rawCodein/out is set to the raw, device-dependent scan-code of the keypress.

• shiftStatein/out is set to the IBM-defined shift state value (e.g., <CTRL> keypress is
0x0004). OpenZinc provides definitions for these values in the UI_EVT.HPP source
module. For example, S_CTRL = 0x0004.

• valuein/out is set to the ASCII, ISO or Unicode character value, depending on the mode
in which the program is running.

Generic Mouse Functions

This section describes functions used for low-level interaction with the mouse. These
functions should not be used directly by the programmer, but descriptions are provided
in the event that the programmer needs to implement a similar device, has need of
implementing such a device on a new hardware configuration, or just wants to gain a
better understanding of the operation of OpenZinc Application Framework.

I_MouseClose

Syntax
void I_MouseClose(void);

Remarks
This function de-initializes the mouse device and restores the mouse ISR saved by
I_MouseOpen, if one existed. This function is called by the UID_MOUSE destructor.

Appendix I - Hardware Issues 807

I_MouseOpen

Syntax
int I_MouseOpen(void);

Remarks
This function initializes the mouse device. This function saves the current mouse ISR,
if one exists, and sets the ISR to one provided by OpenZinc Application Framework's library
(MouseISR()). This function is called by the UID_MOUSE constructor.

• returnValueout indicates the status of the mouse device after attempting to initialize
it. If the mouse device was successfully initialized, returnValue is TRUE. Otherwise
it is FALSE.

In this chapter we discuss the specifics of the text mode device driver. This includes the
functions to control the edit cursor in text mode.

Global Variables

808 OpenZinc Application Framework—Programmer's Reference Volume 2

Text Driver Functions

This section describes functions used for low-level interaction with the text display.
These functions should not be used directly by the programmer but descriptions are
provided in the event that the programmer needs to implement a similar device, has need
of implementing such a device on a new hardware configuration, or just wants to gain a
better understanding of the operation of OpenZinc Application Framework.

I_ScreenClose

Syntax
void I_ScreenClose(void);

Remarks
This function restores the screen to the mode it was in prior to running the application.
The original mode was saved by I_ScreenOpen(). This function also restores the blink
attribute. This function is called by the UI_TEXT_DISPLAY destructor.

I_ScreenOpen

Syntax
void I_ScreenOpen(int *mode, int *lines, int *columns);

Remarks
This function initializes the screen device for use. It saves the mode in use at startup and
turns off the blink attribute to allow the use of 16 colors. This function is called by the
UI_TEXT_DISPLAY constructor.

• modein/out specifies what resolution to use. When returning from this function, mode
will contain the mode actually initialized, mode can be any valid text display mode
value as defined by IBM. OpenZinc defines constants for each value (e.g., TDM_25x40
= 1) in the UI_DSP.HPP source file. For a complete listing of TDM_ values, see
"Chapter 40—UI_TEXT_DISPLAY" in Programmer's Reference Volume 1 or see
the Quick Reference Guide.

Appendix I - Hardware Issues 809

• linesout will contain the number of horizontal lines on the initialized display.

• columnsout will contain the number of vertical columns on the initialized display.

I_ScreenPut

Syntax
void I_ScreenPut(int left, int top, int right, int bottom, void *buffer);

Remarks
This function places the contents of a buffer on the screen. This function is called from
the UI_TEXT_DISPLAY constructor, UI_TEXT_DISPLAY::DeviceMove(), UI_-
TEXT_DISPLAY::RegionMove(), UI_TEXT_DISPLAY::VirtualGet(), and UI_-
TEXT_DISPLAY::VirtualPut().

• leftin, topin, rightin, bottomin is the region of the screen where the buffer is to be
displayed, left and top are zero-based, so the upper-left corner of the screen is at
0, 0.

• bufferin is really a pointer to short values. The high-order byte of each short specifies
the foreground and background colors to display the character (i.e., the high-order
nibble sets the background and the low-order nibble sets the foreground), and the
low-order byte contains the character to be displayed.

I_CursorPosition

Syntax
void I_CursorPosition(int y, int x, int val);

Remarks
This function positions the edit cursor, or caret, on the screen.

NOTE: The edit cursor should not be confused with the mouse cursor.

810 OpenZinc Application Framework—Programmer's Reference Volume 2

• yin is the y, or vertical, position of the cursor on the screen. The screen is zero-based,
so the top row is 0.

• xin is the x, or horizontal, position of the cursor on the screen. The screen is
zero-based, so the left column is 0.

• valm indicates the type of cursor to display. If val is DC_INSERT, the cursor is an
insert cursor. Otherwise the cursor is an overstrike cursor.

I_CursorRemove

Syntax
void I_CursorRemove(void);

Remarks
This function removes the edit cursor, or caret, from the screen. To redisplay the cursor,
call I_CursorPosition.

NOTE: The edit cursor should not be confused with the mouse cursor.

Generic Internationalization Functions

This section describes a function used for low-level interaction with the operating system.
This function should not be used directly by the programmer.

I_GetCodePage

Syntax
void I_GetCodePage(void);

Remarks

This function determines which code page is in use by the operating system.

Appendix I - Hardware Issues 811

OpenZinc Application Framework—Programmer's Reference Volume 2 812

INDEX

<CTRL-BREAK>
ISR 806

<CTRL-C>
ISR 806

_applicationIconName 208
_asteriskIconName 209
_delta 441-443
_height 459,460
_numberID 681, 704
_userFunction 441, 443
_value 781
_woFlags 459, 460

A
Add (function) 91, 188, 281, 303, 324,

363, 382, 660, 688
application

for NEC PC 9800 803
application icon 208
applications

run-time driver binding 804
arg 746,750,751
argl 751,752
arg2 751,752
arrays

of pop-up items 323, 361, 381
pop-up menu use of 323
pull-down item use of 361
pull-down menu use of 381

asterisk icon 209
atcFlags 774
attrib (macro) 747

B
background 161, 747, 769, 810

bdFlags 39,40
bignum 15
BIOS calls 803
bitmapArray 56, 58, 61
bitmapHeight 56, 58
bitmapName 55-58, 63, 776
bitmapWidth 56, 57
border 39
borderWidth 279,280
btFlags 55, 57, 58, 295, 297, 776
btFlags (variable) 57
buffer

keyboard 806
button 55

getting text 74
maximize 251
minimize 265
seting text 75
system 499

C
caret 810
cellHeight 181-183, 186, 777
character

checking the keyboard 806
getting from keyboard 806

Check boxes
BTF_CHECK_BOX (flag) 59

CheckSelection (function) 690
child windows 680
ClassName

pop-up item implementation of 304
ClassName (function)

bignum implementation of 23
button implementation of 65

ClassName (virtual function)
border implementation of 42
combo box implementation of 92
date implementation of 121

Index 813

formatted string implementation of 144
group implementation of 166
horizontal list implementation of 189
icon implementation of 214
integer implementation of 238
maximize button implementation of 254
minimize button implementation of 268
notebook implementation of 282
pop-up menu implementation of 325
prompt implementation of 342
pull-down item implementation of 364
pull-down menu implementation of 383
real implementation of 402
scroll bar implementation of 426
spin control implementation of 446
status bar implementation of 462
string implementation of 479
system button implementation of 504
text implementation of 577
time implementation of 605
title implementation of 625
tool bar implementation of 642
vertical list implementation of 661
window implementation of 690

clipList 681, 683
colorBitmap 56, 58
columnHeader 520, 521, 532
combo box 85

getting text 102
setting text 102

comboShell 672
compare function

auto sort 712
compare functions

combo box 90
compareFunction 85, 87, 88, 90, 104, 181,

183, 184, 186, 198, 653, 655, 656,
658, 670

compressedText 137-140, 144, 145, 776
construction order of objects 253, 267,

503
Control (function) 725, 735
Count (function) 93
Current (function) 94, 691
currentRecord 520, 521
cursor

I_CursorPosition 810
I_CursorRemove 811
position 810
removing from the screen 811

CursorOffset (function) 578

D
DataGet (function) 23, 43, 66, 122, 144,

166, 215, 238, 343, 402, 480, 524,
578, 605, 625

bignum implementation of 23
border implementation of 43
button implementation of 66
date implementation of 122
formatted string implementation of 144
group implementation of 166
icon implementation of 215
integer implementation of 238
prompt implementation of 343
real implementation of 402
string implementation of 480
text implementation of 578
time implementation of 605
title implementation of 625

DataSet (function) 25, 43, 67, 123, 146,
167, 216, 239, 344, 403, 481, 525,
579, 606, 626

bignum implementation of 25
border implementation of 43
button implementation of 67
date implementation of 123
formatted string implementation of 146
group implementation of 167
icon implementation of 216
integer implementation of 239
prompt implementation of 344
real implementation of 403, 405
string implementation of 481
text implementation of 579
time implementation of 606
title implementation of 626

date 113
day 116-118,129,745

814 OpenZinc Application Framework—Programmer's Reference Volume 2

decimal 15, 18, 22, 395, 398, 406, 785,
786, 787

decimal values (fixed place) 18
decorationName 56, 77, 252, 258, 266,

271, 296, 310, 500, 510
defaultlnitialized 15, 16, 55-57, 113, 114,

231, 232, 251, 252, 265, 266, 295,
296, 395, 396, 441, 442, 500, 501,
597, 598, 680, 682

defaultObject 681,683
defFlag 733-735
DeleteRecord (function) 526
deleteText 137-140, 145, 146, 148, 149,

151, 776
denominator 775
depth 56, 57, 286, 309, 369, 509, 704,

707, 776
destination 137, 149, 150
Destroy (function) 94, 190, 662, 691
device driver

binding 803
cursor 810
hardware 803
initializing 804
keyboard 805
mouse 807
text display 809

dncFlags 774
DOS/V

devices 803
DOSHARDWAREDEP 803
DOSHARDWARELIB 803
Drawltem (function)

border implementation of 44
button implementation of 68
icon implementation of 216
pop-up item implementation of 304
prompt implementation of 345
pull-down item implementation of 365
string implementation of 482
text implementation of 580

Drawltem (virtual function)
notebook implementation of 283
scroll bar implementation of 427
status bar implementation of 463
table header implementation of 544

table implementation of 526
table record implementation of 559
window implementation of 692

DrawRecord (function) 527
dtFlags 113-115,491,776
dtFlags (variable) 114

E
edit fields

combo box 85
date 113
floating point 395
formatted strings 137
integer 231
multi-line text 571
numeric 17
single line text 473
time 597

edit mask 139
editMask 137-139, 145, 146, 148, 149,

151, 776
element 1 88, 184, 656
element2 88, 184, 656
Event (virtual function)

bignum implementation of 26
border implementation of 45
button implementation of 69
combo box implementation of 95
date implementation of 124
floating-point implementation of 404
formatted string implementation of 147
group implementation of 168
horizontal list implementation of 190
icon implementation of 217
integer implementation of 240
maximize button implementation of 255
minimize button implementation of 269
notebook implementation of 284
pop-up item implementation of 305
pop-up menu implementation of 326
prompt implementation of 346
pull-down item implementation of 366
pull-down menu implementation of 383

Index 815

real number implementation of 404
scroll bar implementation of 428
spin control implementation of 446
status bar implementation of 464
string implementation of 483
system button implementation of 505
table header implementation of 545
table implementation of 528
table record implementation of 560
text implementation of 581
time implementation of 607
title implementation of 627
tool bar implementation of 643
vertical list implementation of 662
window implementation of 693

events
logical 763
system 757

exclamation icon 209
expanded 137, 149, 150
Export (function) 149

formatted string implementation of 149

F
fieldObject 441-443,450,451,779
file

storage 773
First (function) 98, 699
flagl 748, 749
flag2 748, 749
flags

button 59
date 116
formatted strings 140
icon 210
integer 234
numeric 18
pop-up item 298, 301
pop-up menu 321, 323
scroll bar 420, 422
single line text 476
slider 422
time 600

FlagSet (macro) 748
flagSetting 85, 87, 90, 181, 183, 186, 653,

655, 658
FlagsSet (macro) 749
floating-point values 395
foreground 747, 810
Format (function) 405
formatted string 137

G
Generic (function) 507, 700

system button implementation of 507
window implementation of 700

Get (function) 99, 704
GetCursorPos (function) 587
GetRecord (function) 530
group

getting text 171
setting text 172

group box 161

H
hand icon 209
hardware

DOS/V 803
IBM AT 803
Japanese 803
NEC PC 9800 803
supported 803

help contexts 686, 703, 725
helpContext 507, 680, 681, 683, 686, 700,

703, 721, 722, 725, 775
horizontal list 181

getting text 195
hScroll 193, 197, 419, 430, 487, 529, 586,

681, 683, 697, 708, 711, 758, 759
hScrollInfo 681,683,711

816 OpenZinc Application Framework—Programmer's Reference Volume 2

|

I_CursorPosition
function 810

I_CursorRemove
function 811

LKeyboardClose
function 805

I_KeyboardOpen
function 806

I_KeyboardQuery
function 806

I_KeyboardRead
function 806

I_MAKENAME
macro 804
use of 804

I_MouseClose
function 807

I_MouseOpen
function 808

I_ScreenClose
function 809

I_ScreenOpen
function 809

I_ScreenPut
function 810

IBM AT
devices 803

icFlags (variable) 207, 209, 210, 777, 209
icon 207

default names 208
getting text 222
setting text 222

iconArray 208,209,211,777
iconHeight 208, 209, 777
iconName 207-210, 777
iconRegion 208, 209
iconWidth 208, 209, 777
identifiers 769
Import (function) 151

formatted string implementation of 151
include file

UI_DSP.HPP 7
UI_EVT.HPP 7
UI_GEN.HPP 6

ULMAP.HPP 7
UI_WIN.HPP 8

indentation 377-379
index 86, 99, 100, 813
Index (function) 99
Information (virtual function)

bignum implementation of 27
border implementation of 47
button implementation of 72
combo box implementation of 100
date implementation of 125
formatted string implementation of 152
group implementation of 170
horizontal list implementation of 194
icon implementation of 220
integer implementation of 241
maximize button implementation of 256
minimize button implementation of 270
notebook implementation of 286
pop-up item implementation of 308
pop-up menu implementation of 328
prompt implementation of 347
pull-down item implementation of 368
pull-down menu implementation of 385
real implementation of 406
scroll bar implementation of 431
spin control implementation of 449
status bar implementation of 465
string implementation of 488
system button implementation of 508
table header implementation of 547
table implementation of 530
table record implementation of 561
text implementation of 588
time implementation of 608
title implementation of 629
tool bar implementation of 645
vertical list implementation of 666
window implementation of 705

insertMode 473,474,571,572
InsertRecord (function) 533
integer 231
ISR

<CTRL-BREAK> 806
<CTRL-C> 806
keyboard 805

Index 817

mouse 807, 808
ItemDepthSearch (function) 386

J
Japanese hardware 803

K
keyboard

checking 806
closing 805
device driver 805
getting character 806
I_KeyboardClose 805
I_KeyboardOpen 806
I_KeyboardQuery 806
I_KeyboardRead 806
initializing 806
ISR 805
shift state 806

L
label Widget 161, 162
languageName 16, 29, 114, 127, 232, 243,

396, 408, 442, 500, 511, 598, 611,
681, 684, 687, 711

Last (function) 103,709
libraries

NEC PC 9800 803
list 181, 653
list (horizontal) 181
list (vertical) 653
Load (virtual function)

bignum implementation of 33
border implementation of 49
button implementation of 79

combo box implementation of 106
date implementation of 131
dialog window implementation of 728
formatted string implementation of 156
group implementation of 175
horizontal list implementation of 201
icon implementation of 224
integer implementation of 246
maximize button implementation of 260
minimize button implementation of 274
notebook implementation of 289
pop-up item implementation of 313
pop-up menu implementation of 332
prompt implementation of 350
pull-down item implementation of 372
pull-down menu implementation of 389
real implementation of 411
scroll bar implementation of 435
spin control implementation of 453
status bar implementation of 468
string implementation of 493
system button implementation of 513
table header implementation of 550
table implementation of 536
table record implementation of 565
text implementation of 592
time implementation of 615
title implementation of 632
tool bar implementation of 648
vertical list implementation of 673
window implementation of 716

M
macros 804
MAKE_SETFUNCTIONS

macro 804
maximize button 251
maximizing a window 251
maxRecords 519-523, 525, 541, 542
maxValue 3,24,31,474,491,751-753
MDI windows 680, 685, 702
menu items

pop-up 295

818 OpenZinc Application Framework—Programmer's Reference Volume 2

pull-down 357
menus

pop-up 319
pull-down 377
tool bar 637

Message (function) 76
button implementation of 76

minimize button 265
minimizing a window 265
miniNumeratorX 782
minObject 507, 680, 684, 700
minValue 3, 474, 491, 752, 753
mniFlags 295-297, 778
mniFlags (variable) 298, 301
monoBitmap 56, 58
month 116-118, 121, 129, 604, 745
mouse

closing 807
device driver 807
I_MouseClose 807
I_MouseOpen 808
initializing 808
ISR 807, 808

moving a window 621
mSelect 378, 386, 387
msgFlags 733-735
multi-line text 571
multiple inheritance

window implementation of 679
my Language 16, 17, 30, 114, 115, 128,

232, 243, 396, 408, 500, 501, 511,
598, 599, 611, 681, 683, 712

N
NEC PC 9800

devices 803
New (function)

bignum implementation of 34
border implementation of 50
button implementation of 80
combo box implementation of 108
date implementation of 133
dialog window implementation of 729

formatted string implementation of 157
group implementation of 176
horizontal list implementation of 202
icon implementation of 226
integer implementation of 247
maximize button implementation of 261
minimize button implementation of 275
notebook implementation of 290
pop-up item implementation of 315
pop-up menu implementation of 333
prompt implementation of 352
pull-down item implementation of 373
pull-down menu implementation of 391
real implementation of 412
scroll bar implementation of 436
spin control implementation of 454
status bar implementation of 469
string implementation of 495
system button implementation of 514
table header implementation of 551
table implementation of 537
table record implementation of 566
text implementation of 593
time implementation of 616
title implementation of 633
tool bar implementation of 649
vertical list implementation of 675
window implementation of 717

NewFunction (virtual function)
bignum implementation of 36
border implementation of 51
button implementation of 82
combo box implementation of 109
formatted string implementation of 158
group implementation of 177
horizontal list implementation of 203
icon implementation of 227
integer implementation of 249
maximize button implementation of 262
minimize button implementation of 276
notebook implementation of 291
pop-up item implementation of 316
pop-up menu implementation of 334
prompt implementation of 353
pull-down item implementation of 375
pull-down menu implementation of 392

Index 819

real implementation of 413
scroll bar implementation of 437
spin control implementation of 455
status bar implementation of 471
string implementation of 496
system button implementation of 516
table header implementation of 552
table implementation of 538
table record implementation of 567
text implementation of 595
time implementation of 617
title implementation of 635
tool bar implementation of 650
vertical list implementation of 676
window implementation of 719

nmFlags 15, 17, 231-233, 395-397, 775,
777, 779

nmFlags (variable) 18
noOfObjects 781, 782
number 15

integer representation of 231
numberlD 8, 101, 286, 287, 309, 369,

509, 681, 704, 707, 742, 774, 775
numerator 775

O

objectl 681,712-714
object2 681,712-714
offset 572, 578, 583-585, 588, 590, 765,

774, 775
operator overload

+ 91, 281, 303, 363, 688
- 104, 198, 311, 329, 370, 387, 670,

713
output

text display 810

P
ParseRange (function) 491

pixmap 56, 58
pop-up item 295
pop-up menu 319
processError 16, 30, 31, 114, 128, 129,

231, 244, 245, 395, 408, 409, 491,
598, 611, 612

prompt 337
getting text 348
setting text 348

pull-down item 357
pull-down menu 377

Q
question icon 209
Quick 809

R
radio buttons

BTF_RADIO_BUTTON (flag) 60
range 15-19, 21, 24, 28, 30, 31, 113-116,

118, 120, 126, 129, 141, 231,
232-234, 236, 242, 244, 395-399, 401,
407, 409, 417, 421, 441, 443, 444,
491, 492, 597-602, 604, 612, 726,
775-777, 779, 781

ranges
date 116
integer 233
numeric 18
time use of 600

rawCode 541, 555, 558, 561, 760, 763,
806

recordNum 520, 526, 527, 530, 533, 534,
556

records 519-526,532,534,543,555
recordSize 519-522, 541, 542
refObjectID 774
RegionMax (function) 172, 562, 668, 709
rlcFlags 774

820 OpenZinc Application Framework—Programmer's Reference Volume 2

rowHeader 520, 521, 533
run-time driver binding 803

S
SampleFunction (function) 2
sbFlags 9, 417-419, 779
sbFlags (variable) 420, 422
scroll bar

horizontal 417
vertical 417

ScrollEvent (function) 197, 669, 710
searchID 774, 778, 779, 782
selectable objects

button 55
icon 207
maximize button 251
minimize button 265
pop-up item 295
pull-down item 357
system button 499
title bar 621

selectedObject 681, 690, 705
SetCurrent (function) 534
SetCursorPos (function) 590
SetDecorations (function) 77, 258, 271,

310, 510
SetLanguage (function) 29, 127, 243, 408,

511, 611, 711
shadow border 808
shadowWidth 279,280
shift state

checking the keyboard 806
shiftState 8, 806
signature 773
single-line text 473
sizing a window 39
Slider 417
Sort (function) 103, 198, 670
source 30, 77, 128, 137, 151, 243, 258,

272, 311, 408, 511, 611, 712, 739,
803, 804, 806, 807, 809

spin control
getting text 450

setting text 450
static variables

width 40
status

button 56, 57
stFlags 473-475, 780
stFlags (variable) 476
storage 773
Store (virtual function) 52, 134

bignum implementation of 36
border implementation of 52
button implementation of 82
combo box implementation of 110
date implementation of 134
dialog window implementation of 730
formatted string implementation of 159
group implementation of 178
horizontal list implementation of 204
icon implementation of 228
integer implementation of 249
maximize button implementation of 263
minimize button implementation of 277
notebook implementation of 292
pop-up item implementation of 317
pop-up menu implementation of 335
prompt implementation of 354
pull-down item implementation of 375
pull-down menu implementation of 393
real implementation of 414
scroll bar implementation of 438
spin control implementation of 456
status bar implementation of 471
string implementation of 497
system button implementation of 516
table header implementation of 553
table implementation of 539
table record implementation of 568
text implementation of 595
time implementation of 618
title implementation of 635
tool bar implementation of 651
vertical list implementation of 677
window implementation of 719

string 473
getting text 489
setting text 490

Index 821

StringCompare (function) 712
window implementation of 712

stringID 101, 286, 287, 309, 369, 509,
704, 707, 775

stripText 55, 66
Subtract (function) 104, 198, 311, 329,

370, 387, 670, 713
supportDecorations 681, 683
syFlags 500, 501, 780
system button 499

T
tableRecord 520, 521, 533
tblFlags 9, 519, 521, 522, 780
text 571

getting text 589
setting text 589

text display 809
closing 809
I_ScreenClose 809
I_ScreenOpen 809
I_ScreenPut 810
initializing 809
output 810

text mode
blink attribute 809
characters 808

thFlags 9, 541, 542, 780
time 597
title 621

getting text 630
setting text 630

titleRegion 208, 210
tmFlags 597-599,781
tool bar 637
topRecord 520, 522
Top Widget (function) 671

U
UI_TEXT_DISPLAY 809
UID_KEYBOARD 806
UIW_BIGNUM (class) 15
UIW_BIGNUM (function) 17, 32
UIW_BORDER (class) 39
UIW_BORDER (function) 40, 47
UIW_BUTTON (class) 55
UIW_BUTTON (function) 58, 78
UIW_COMB 0_B OX (class) 85
UIW_COMB0_BOX (function) 87, 105
UIW_DATE (class) 113
UIW_DATE (function) 115,130
UIW_FORMATTED_STRING (class) 137
UIW_FORMATTED_STRING (function)

139, 154
UIW_GROUP (class) 161
UIW_GROUP (function) 162, 173
UIW_HZ_LIST (class) 181
UIW_HZ_LIST (function) 183, 199
UIW_ICON (class) 207
UIW_ICON (function) 223
UIW_INTEGER (class) 231
UIW_INTEGER (function) 233
UIW_MAXIMIZE_BUTTON (class) 251
UIW_MAXIMIZE_BUTTON (function)

253, 259
UIW_MINIMIZE_BUTTON (class) 265
UIW_MINIMIZE_BUTTON (function)

266, 272
UIW_NOTEBOOK (class) 279
UIW_NOTEBOOK (function) 280, 288
UIW_POP_UP_ITEM (class) 295
UIW_POP_UP_ITEM (function) 297, 312
UIW_POP_UP_MENU (class) 319
UIW_POP_UP_MENU (function) 320,

330
UIW_PROMPT (class) 337
UIW_PROMPT (function) 338, 349
UIW_PULL_DOWN_ITEM (class) 357
UIW_PULL_DOWN_ITEM (function)

358, 371
UIW_PULL_DOWN_MENU (class) 377
UIW_PULL_DOWN_MENU (function)

379, 388

822 OpenZinc Application Framework—Programmer's Reference Volume 2

UIW_REAL (class) 395
UIW_REAL (function) 397
UIW_SCROLL_BAR (class) 417
UIW_SCROLL_BAR (function) 419, 433
UIW_SPIN_CONTROL (class) 441
UIW_SPIN_CONTROL (function) 442,

451
UIW_STATUS_BAR (class) 459
UIW_STATUS_BAR (function) 460, 467
UIW_STRING (class) 473
UIW_STRING (function) 475, 492
UIW_SYSTEM_BUTTON (class) 499
UIW_SYSTEM_BUTTON (function) 501,

512
UIW_TABLE (class) 519
UIW_TABLE (function) 522, 535
UIW_TABLE_HEADER (class) 541
UIW_TABLE_HEADER (function) 542,

549
UIW_TABLE_RECORD (class) 555
UIW_TABLE_RECORD (function) 556,

564
UIW_TEXT (class) 571
UIW_TEXT (function) 573, 591
UIW_TIME (class) 597
UIW_TIME (function) 599, 613
UIW_TITLE (class) 621
UIW_TITLE (function) 622, 631
UIW_TOOL_BAR (class) 637
UIW_TOOL_BAR (function) 638, 646
UIW_VT_LIST (class) 653
UIW_VT_LIST (function) 655, 672
UIW_WINDOW (class) 679
UIW_WINDOW (function) 683, 715
user function

bignum use of 20
button use of 62
date use of 119
formatted string use of 142
icon use of 212
integer use of 235
pop-item use of 301
pop-up item use of 299
pull-down item use of 360
real use of 400
scroll bar use of 423

spin control use of 444
string use of 477
table record use of 557
text use of 575
time use of 603

user function definition 20, 62, 119, 142,
212, 235, 299, 360, 400, 423, 444,
477, 557, 575, 603

userFunction 15, 17, 21, 55, 58, 62, 113,
115, 120, 137, 139, 142, 207, 210,
212, 231, 233, 236, 295, 297, 300,
357, 358, 360, 395, 397, 400, 401,
418, 419, 423, 441, 443, 444, 473,
475, 477, 555-557, 571, 573, 575,
597, 599, 603, 604, 773

V
Validate (virtual function)

bignum implementation of 30
date implementation of 128
integer implementation of 244
real implementation of 408
time implementation of 611

vertical list
getting text 667
setting text 667

virtualRecord 520, 521, 533, 556, 563
VirtualRecord (function) 563
vScroll 419, 430, 529, 587, 666, 669, 681,

683, 699, 708, 711, 761
vScrollInfo 197,669,681,683,711

W
width (static variable) 40
window 679

child 680
getting text 707
MDI 680
setting text 708

Index 8 2 3

windows
text mode 808

wnFlags 85, 87, 103, 161, 162, 181, 183,
319, 320, 357, 358, 441, 443, 451,
571, 573, 637, 638, 653, 655, 680,
682, 779, 781, 782

woAdvancedFlags 85, 87, 181, 183, 319,
320, 377, 379, 418, 419, 423, 507,
637, 638, 653, 655, 680, 683, 700,
721, 722, 775

woAdvancedFlags (variable) 423
woStatus 680

Y
year 116-118,745

Z
ZAF_DIALOG_WINDOW (class) 721
ZAF_DIALOG_WINDOW (function) 722,

726
ZAF_MESSAGE_WINDOW (class) 733
ZAF_MESSAGE_WINDOW (function)

734
ZIL_HARDWARE 803

macro 804
ZIL_MODULE

macro 805
use of 804

ZIL_NULLH 3, 6, 753, 754
ZILJVOIDF 3, 6, 755
ZIL_VOIDP 3, 6, 755, 756
OpenZinc Application Framework

default icons 208

~UIW_FORMATTED_STRING (function)
143

~UIW_GROUP (function) 165
~UIW_HZ_LIST (function) 188
~UIW_ICON (function) 214
~UIW_INTEGER (function) 237
~UIW_MAXIMIZE_BUTTON (function)

254
~UIW_MINIMIZE_BUTTON (function)

267
~UIW_NOTEBOOK (function) 281
~UIW J O P J J P _ I T E M (function) 302
~UIW_POP_UP_MENU (function) 324
~UIW_PROMPT (function) 342
~UIW_PULL_DOWN_ITEM (function)

362
~UIW_PULL_DOWN_MENU (function)

381
~UIW_REAL (function) 401
~UIW_SCROLL_BAR (function) 425
~UIW_SPIN_CONTROL (function) 445
~UIW_STATUS_BAR (function) 462
~UIW_STRING (function) 479
~UIW_SYSTEM_BUTTON (function) 503
~UIW J A B L E (function) 524
~UIWJABLE_HEADER (function) 544
~UIW J E X T (function) 576
~UIW_TIME (function) 604
~UIW J I T L E (function) 624
~UIWJOOL_BAR (function) 641
~UIW_VT LIST (function) 660
~UIW_WINDOW (function) 688

~UIW_BIGNUM (function) 22
~UIW_BUTTON (function) 64
~UIW_COMBO_BOX (function) 91
~UIW_DATE (function) 121

8 2 4 OpenZinc Application Framework—Programmer's Reference Volume 2

 GNU Free Documentation License
 Version 1.3, 3 November 2008

 Copyright (C) 2000, 2001, 2002, 2007, 2008 Free Software Foundation,
Inc.
 <http://fsf.org/>
 Everyone is permitted to copy and distribute verbatim copies
 of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other
functional and useful document "free" in the sense of freedom: to
assure everyone the effective freedom to copy and redistribute it,
with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible
for modifications made by others.

This License is a kind of "copyleft", which means that derivative
works of the document must themselves be free in the same sense. It
complements the GNU General Public License, which is a copyleft
license designed for free software.

We have designed this License in order to use it for manuals for free
software, because free software needs free documentation: a free
program should come with manuals providing the same freedoms that the
software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that
contains a notice placed by the copyright holder saying it can be
distributed under the terms of this License. Such a notice grants a
world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The "Document", below,
refers to any such manual or work. Any member of the public is a
licensee, and is addressed as "you". You accept the license if you
copy, modify or distribute the work in a way requiring permission
under copyright law.

A "Modified Version" of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with
modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of
the Document that deals exclusively with the relationship of the
publishers or authors of the Document to the Document's overall
subject (or to related matters) and contains nothing that could fall
directly within that overall subject. (Thus, if the Document is in
part a textbook of mathematics, a Secondary Section may not explain
any mathematics.) The relationship could be a matter of historical

connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding
them.

The "Invariant Sections" are certain Secondary Sections whose titles
are designated, as being those of Invariant Sections, in the notice
that says that the Document is released under this License. If a
section does not fit the above definition of Secondary then it is not
allowed to be designated as Invariant. The Document may contain zero
Invariant Sections. If the Document does not identify any Invariant
Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed,
as Front-Cover Texts or Back-Cover Texts, in the notice that says that
the Document is released under this License. A Front-Cover Text may
be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the
general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of
pixels) generic paint programs or (for drawings) some widely available
drawing editor, and that is suitable for input to text formatters or
for automatic translation to a variety of formats suitable for input
to text formatters. A copy made in an otherwise Transparent file
format whose markup, or absence of markup, has been arranged to thwart
or discourage subsequent modification by readers is not Transparent.
An image format is not Transparent if used for any substantial amount
of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain
ASCII without markup, Texinfo input format, LaTeX input format, SGML
or XML using a publicly available DTD, and standard-conforming simple
HTML, PostScript or PDF designed for human modification. Examples of
transparent image formats include PNG, XCF and JPG. Opaque formats
include proprietary formats that can be read and edited only by
proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the
machine-generated HTML, PostScript or PDF produced by some word
processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself,
plus such following pages as are needed to hold, legibly, the material
this License requires to appear in the title page. For works in
formats which do not have any title page as such, "Title Page" means
the text near the most prominent appearance of the work's title,
preceding the beginning of the body of the text.

The "publisher" means any person or entity that distributes copies of
the Document to the public.

A section "Entitled XYZ" means a named subunit of the Document whose
title either is precisely XYZ or contains XYZ in parentheses following
text that translates XYZ in another language. (Here XYZ stands for a
specific section name mentioned below, such as "Acknowledgements",
"Dedications", "Endorsements", or "History".) To "Preserve the Title"
of such a section when you modify the Document means that it remains a

section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which
states that this License applies to the Document. These Warranty
Disclaimers are considered to be included by reference in this
License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has
no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either
commercially or noncommercially, provided that this License, the
copyright notices, and the license notice saying this License applies
to the Document are reproduced in all copies, and that you add no
other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further
copying of the copies you make or distribute. However, you may accept
compensation in exchange for copies. If you distribute a large enough
number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and
you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have
printed covers) of the Document, numbering more than 100, and the
Document's license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify
you as the publisher of these copies. The front cover must present
the full title with all words of the title equally prominent and
visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve
the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit
legibly, you should put the first ones listed (as many as fit
reasonably) on the actual cover, and continue the rest onto adjacent
pages.

If you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine-readable Transparent
copy along with each Opaque copy, or state in or with each Opaque copy
a computer-network location from which the general network-using
public has access to download using public-standard network protocols
a complete Transparent copy of the Document, free of added material.
If you use the latter option, you must take reasonably prudent steps,
when you begin distribution of Opaque copies in quantity, to ensure
that this Transparent copy will remain thus accessible at the stated
location until at least one year after the last time you distribute an
Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the
Document well before redistributing any large number of copies, to
give them a chance to provide you with an updated version of the
Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under
the conditions of sections 2 and 3 above, provided that you release
the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy
of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct
 from that of the Document, and from those of previous versions
 (which should, if there were any, be listed in the History section
 of the Document). You may use the same title as a previous version
 if the original publisher of that version gives permission.
B. List on the Title Page, as authors, one or more persons or entities
 responsible for authorship of the modifications in the Modified
 Version, together with at least five of the principal authors of the
 Document (all of its principal authors, if it has fewer than five),
 unless they release you from this requirement.
C. State on the Title page the name of the publisher of the
 Modified Version, as the publisher.
D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications
 adjacent to the other copyright notices.
F. Include, immediately after the copyright notices, a license notice
 giving the public permission to use the Modified Version under the
 terms of this License, in the form shown in the Addendum below.
G. Preserve in that license notice the full lists of Invariant Sections
 and required Cover Texts given in the Document's license notice.
H. Include an unaltered copy of this License.
I. Preserve the section Entitled "History", Preserve its Title, and add
 to it an item stating at least the title, year, new authors, and
 publisher of the Modified Version as given on the Title Page. If
 there is no section Entitled "History" in the Document, create one
 stating the title, year, authors, and publisher of the Document as
 given on its Title Page, then add an item describing the Modified
 Version as stated in the previous sentence.
J. Preserve the network location, if any, given in the Document for
 public access to a Transparent copy of the Document, and likewise
 the network locations given in the Document for previous versions
 it was based on. These may be placed in the "History" section.
 You may omit a network location for a work that was published at
 least four years before the Document itself, or if the original
 publisher of the version it refers to gives permission.
K. For any section Entitled "Acknowledgements" or "Dedications",
 Preserve the Title of the section, and preserve in the section all
 the substance and tone of each of the contributor acknowledgements
 and/or dedications given therein.
L. Preserve all the Invariant Sections of the Document,
 unaltered in their text and in their titles. Section numbers

 or the equivalent are not considered part of the section titles.
M. Delete any section Entitled "Endorsements". Such a section
 may not be included in the Modified Version.
N. Do not retitle any existing section to be Entitled "Endorsements"
 or to conflict in title with any Invariant Section.
O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or
appendices that qualify as Secondary Sections and contain no material
copied from the Document, you may at your option designate some or all
of these sections as invariant. To do this, add their titles to the
list of Invariant Sections in the Modified Version's license notice.
These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains
nothing but endorsements of your Modified Version by various
parties--for example, statements of peer review or that the text has
been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list
of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or
through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or
by arrangement made by the same entity you are acting on behalf of,
you may not add another; but you may replace the old one, on explicit
permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License
give permission to use their names for publicity for or to assert or
imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this
License, under the terms defined in section 4 above for modified
versions, provided that you include in the combination all of the
Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its
license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single
copy. If there are multiple Invariant Sections with the same name but
different contents, make the title of each such section unique by
adding at the end of it, in parentheses, the name of the original
author or publisher of that section if known, or else a unique number.
Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History"
in the various original documents, forming one section Entitled
"History"; likewise combine any sections Entitled "Acknowledgements",
and any sections Entitled "Dedications". You must delete all sections

Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other
documents released under this License, and replace the individual
copies of this License in the various documents with a single copy
that is included in the collection, provided that you follow the rules
of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and
distribute it individually under this License, provided you insert a
copy of this License into the extracted document, and follow this
License in all other respects regarding verbatim copying of that
document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate
and independent documents or works, in or on a volume of a storage or
distribution medium, is called an "aggregate" if the copyright
resulting from the compilation is not used to limit the legal rights
of the compilation's users beyond what the individual works permit.
When the Document is included in an aggregate, this License does not
apply to the other works in the aggregate which are not themselves
derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these
copies of the Document, then if the Document is less than one half of
the entire aggregate, the Document's Cover Texts may be placed on
covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form.
Otherwise they must appear on printed covers that bracket the whole
aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may
distribute translations of the Document under the terms of section 4.
Replacing Invariant Sections with translations requires special
permission from their copyright holders, but you may include
translations of some or all Invariant Sections in addition to the
original versions of these Invariant Sections. You may include a
translation of this License, and all the license notices in the
Document, and any Warranty Disclaimers, provided that you also include
the original English version of this License and the original versions
of those notices and disclaimers. In case of a disagreement between
the translation and the original version of this License or a notice
or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements",
"Dedications", or "History", the requirement (section 4) to Preserve
its Title (section 1) will typically require changing the actual

title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense, or distribute it is void, and
will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license
from a particular copyright holder is reinstated (a) provisionally,
unless and until the copyright holder explicitly and finally
terminates your license, and (b) permanently, if the copyright holder
fails to notify you of the violation by some reasonable means prior to
60 days after the cessation.

Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.

Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, receipt of a copy of some or all of the same material does
not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the
GNU Free Documentation License from time to time. Such new versions
will be similar in spirit to the present version, but may differ in
detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number.
If the Document specifies that a particular numbered version of this
License "or any later version" applies to it, you have the option of
following the terms and conditions either of that specified version or
of any later version that has been published (not as a draft) by the
Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not
as a draft) by the Free Software Foundation. If the Document
specifies that a proxy can decide which future versions of this
License can be used, that proxy's public statement of acceptance of a
version permanently authorizes you to choose that version for the
Document.

11. RELICENSING

"Massive Multiauthor Collaboration Site" (or "MMC Site") means any
World Wide Web server that publishes copyrightable works and also
provides prominent facilities for anybody to edit those works. A

public wiki that anybody can edit is an example of such a server. A
"Massive Multiauthor Collaboration" (or "MMC") contained in the site
means any set of copyrightable works thus published on the MMC site.

"CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0
license published by Creative Commons Corporation, a not-for-profit
corporation with a principal place of business in San Francisco,
California, as well as future copyleft versions of that license
published by that same organization.

"Incorporate" means to publish or republish a Document, in whole or in
part, as part of another Document.

An MMC is "eligible for relicensing" if it is licensed under this
License, and if all works that were first published under this License
somewhere other than this MMC, and subsequently incorporated in whole
or
in part into the MMC, (1) had no cover texts or invariant sections, and
(2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site
under CC-BY-SA on the same site at any time before August 1, 2009,
provided the MMC is eligible for relicensing.

